Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Find the slope of the line $\ell$ that is parallel to the line $\ell^{\prime}$ passing through the points $(-7,15)$ and $(3,-5)$.
(b) Find an equation for the line $\ell$ which passes through $(-2,9)$ and is perpendicular to the line $\ell^{\prime}$ that passes through the points $(-1,3)$ and $(7,1)$.
2. City Gadgets has fixed costs $\$ 7,000$ while each gadget they produce costs $\$ 40$. If they produce and sell $x$ gadgets, then their revenue is $R(x)=-x^{2}+210 x$ dollars.
(a) Find an equation for the cost function $C(x)$.
(b) Find the break-even point(s) for City Gadgets.
(c) How many gadgets does the company have to produce to maximize its profit?
3. (a) Find the domain of $f(x)=\frac{x+3}{2 x^{3}-13 x^{2}-7 x}$.
(b) Calculate the difference quotient of $f(x)=x^{2}-2 x$ at $x=3$ and simplify.
4. Consider the function $y=f(x)$ whose graph is shown below. Answer all questions on the left and check $(\checkmark)$ the appropriate blank squares of the table on the right.

$f(2)=$
$\lim _{x \rightarrow 2^{-}} f(x)=$
$\lim _{x \rightarrow 2^{+}} f(x)=$

| Statement | True | False |
| :--- | :--- | :--- |
| $f$ is left continuous at $x=2$ |  |  |
| $f$ is right continuous at $x=2$ |  |  |
| $f$ is continuous at $x=2$ |  |  |

$\lim _{x \rightarrow 2} f(x)=$
5. Consider the function

$$
f(x)= \begin{cases}\frac{x-4}{x^{2}-10 x+24}, & \text { if } x<4 \\ -\frac{1}{2}, & \text { if } x=4 \\ \frac{\sqrt{x-3}-1}{x-4}, & \text { if } x>4\end{cases}
$$

Answer all questions, showing all your work.
(a) $f(4)=$
(b) $\lim _{x \rightarrow 4^{-}} f(x)=$
(c) $\lim _{x \rightarrow 4^{+}} f(x)=$
(d) $\lim _{x \rightarrow 4} f(x)=$
(e) Check ( $\checkmark$ ) the appropriate blank squares in the table.

| Statement | True | False |
| :--- | :--- | :--- |
| $f$ is left continuous at $x=4$ |  |  |
| $f$ is right continuous at $x=4$ |  |  |
| $f$ is continuous at $x=4$ |  |  |

