
The tide rises and falls at regular, predictable intervals. (credit: Andrea Schaffer, Flickr)
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Introduction to The Unit Circle: Sine and Cosine Functions
Life is dense with phenomena that repeat in regular intervals. Each day, for example, the tides rise and fall in response to
the gravitational pull of the moon. And as a result of the motion of the moon itself, the tides occur with different
strengths. Throughout history, many Indigenous peoples have used this regularity to build cultural narratives and direct
key activities, such as agriculture, hunting, and fishing. Aboriginal people in the Torres Strait area (the northern tip) of
Australia used the tidal peaks to determine the best times to fish. Their elders explain that the stronger spring tides
stirred up sediment and obscured fish vision, leaving them more likely to take in lures and resulting in a larger catch.1

In mathematics, a function that repeats its values in regular intervals is known as a periodic function. The graphs of such
functions show a general shape reflective of a pattern that keeps repeating. This means the graph of the function has
the same output at exactly the same place in every cycle. And this translates to all the cycles of the function
having exactly the same length. So, if we know all the details of one full cycle of a true periodic function, then we know
the state of the function’s outputs at all times, future and past. In this chapter, we will investigate various examples of
periodic functions.

THE UNIT CIRCLE: SINE AND COSINE FUNCTIONS7

1 Hamacher, D.W., Tapim, A., Passi, S., and Barsa, J. (2018). Dancing with the stars – astronomy and music in the Torres Strait. In Imagining

Other Worlds: Explorations in Astronomy and Culture.
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7.1 Angles
Learning Objectives
In this section you will:

Draw angles in standard position.
Convert between degrees and radians.
Find coterminal angles.
Find the length of a circular arc.
Use linear and angular speed to describe motion on a circular path.

A golfer swings to hit a ball over a sand trap and onto the green. An airline pilot maneuvers a plane toward a narrow
runway. A dress designer creates the latest fashion. What do they all have in common? They all work with angles, and so
do all of us at one time or another. Sometimes we need to measure angles exactly with instruments. Other times we
estimate them or judge them by eye. Either way, the proper angle can make the difference between success and failure
in many undertakings. In this section, we will examine properties of angles.

Drawing Angles in Standard Position
Properly defining an angle first requires that we define a ray. A ray is a directed line segment. It consists of one point on
a line and all points extending in one direction from that point. The first point is called the endpoint of the ray. We can
refer to a specific ray by stating its endpoint and any other point on it. The ray in Figure 1 can be named as ray EF, or in
symbol form

Figure 1

An angle is the union of two rays having a common endpoint. The endpoint is called the vertex of the angle, and the
two rays are the sides of the angle. The angle in Figure 2 is formed from and . Angles can be named using a
point on each ray and the vertex, such as angle DEF, or in symbol form

Figure 2

Greek letters are often used as variables for the measure of an angle. Table 1 is a list of Greek letters commonly used to
represent angles, and a sample angle is shown in Figure 3.

or

theta phi alpha beta gamma

Table 1
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Figure 3 Angle theta, shown as

Angle creation is a dynamic process. We start with two rays lying on top of one another. We leave one fixed in place, and
rotate the other. The fixed ray is the initial side, and the rotated ray is the terminal side. In order to identify the
different sides, we indicate the rotation with a small arrow close to the vertex as in Figure 4.

Figure 4

As we discussed at the beginning of the section, there are many applications for angles, but in order to use them
correctly, we must be able to measure them. The measure of an angle is the amount of rotation from the initial side to
the terminal side. Probably the most familiar unit of angle measurement is the degree. One degree is of a circular
rotation, so a complete circular rotation contains degrees. An angle measured in degrees should always include the
unit “degrees” after the number, or include the degree symbol For example,

To formalize our work, we will begin by drawing angles on an x-y coordinate plane. Angles can occur in any position on
the coordinate plane, but for the purpose of comparison, the convention is to illustrate them in the same position
whenever possible. An angle is in standard position if its vertex is located at the origin, and its initial side extends along
the positive x-axis. See Figure 5.

Figure 5

If the angle is measured in a counterclockwise direction from the initial side to the terminal side, the angle is said to be a
positive angle. If the angle is measured in a clockwise direction, the angle is said to be a negative angle.
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Drawing an angle in standard position always starts the same way—draw the initial side along the positive x-axis. To
place the terminal side of the angle, we must calculate the fraction of a full rotation the angle represents. We do that by
dividing the angle measure in degrees by For example, to draw a angle, we calculate that So, the
terminal side will be one-fourth of the way around the circle, moving counterclockwise from the positive x-axis. To draw
a angle, we calculate that So the terminal side will be 1 complete rotation around the circle, moving
counterclockwise from the positive x-axis. In this case, the initial side and the terminal side overlap. See Figure 6.

Figure 6

Since we define an angle in standard position by its terminal side, we have a special type of angle whose terminal side
lies on an axis, a quadrantal angle. This type of angle can have a measure of 0°, 90°, 180°, 270°, or 360°. See Figure 7.

Figure 7 Quadrantal angles have a terminal side that lies along an axis. Examples are shown.

Quadrantal Angles

An angle is a quadrantal angle if its terminal side lies on an axis, including 0°, 90°, 180°, 270°, or 360°.

HOW TO

Given an angle measure in degrees, draw the angle in standard position.

1. Express the angle measure as a fraction of
2. Reduce the fraction to simplest form.
3. Draw an angle that contains that same fraction of the circle, beginning on the positive x-axis and moving

counterclockwise for positive angles and clockwise for negative angles.
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EXAMPLE 1

Drawing an Angle in Standard Position Measured in Degrees

ⓐ Sketch an angle of in standard position. ⓑ Sketch an angle of in standard position.
Solution

ⓐ
Divide the angle measure by

To rewrite the fraction in a more familiar fraction, we can recognize that

One-twelfth equals one-third of a quarter, so by dividing a quarter rotation into thirds, we can sketch a line at as
in Figure 8.

Figure 8
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ⓑ
Divide the angle measure by

In this case, we can recognize that

Three-eighths is one and one-half times a quarter, so we place a line by moving clockwise one full quarter and one-
half of another quarter, as in Figure 9.

Figure 9

TRY IT #1 Show an angle of on a circle in standard position.

Converting Between Degrees and Radians
Dividing a circle into 360 parts is an arbitrary choice, although it creates the familiar degree measurement. We may
choose other ways to divide a circle. To find another unit, think of the process of drawing a circle. Imagine that you stop
before the circle is completed. The portion that you drew is referred to as an arc. An arc may be a portion of a full circle, a
full circle, or more than a full circle, represented by more than one full rotation. The length of the arc around an entire
circle is called the circumference of that circle.

The circumference of a circle is If we divide both sides of this equation by we create the ratio of the
circumference, which is always to the radius, regardless of the length of the radius. So the circumference of any circle
is times the length of the radius. That means that if we took a string as long as the radius and used it to
measure consecutive lengths around the circumference, there would be room for six full string-lengths and a little more
than a quarter of a seventh, as shown in Figure 10.
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Figure 10

This brings us to our new angle measure. One radian is the measure of a central angle of a circle that intercepts an arc
equal in length to the radius of that circle. A central angle is an angle formed at the center of a circle by two radii.
Because the total circumference equals times the radius, a full circular rotation is radians.

See Figure 11. Note that when an angle is described without a specific unit, it refers to radian measure. For example, an
angle measure of 3 indicates 3 radians. In fact, radian measure is dimensionless, since it is the quotient of a length
(circumference) divided by a length (radius) and the length units cancel.

Figure 11 The angle sweeps out a measure of one radian. Note that the length of the intercepted arc is the same as
the length of the radius of the circle.

Relating Arc Lengths to Radius
An arc length is the length of the curve along the arc. Just as the full circumference of a circle always has a constant
ratio to the radius, the arc length produced by any given angle also has a constant relation to the radius, regardless of
the length of the radius.

This ratio, called the radian measure, is the same regardless of the radius of the circle—it depends only on the angle.
This property allows us to define a measure of any angle as the ratio of the arc length to the radius r. See Figure 12.

If then
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Figure 12 (a) In an angle of 1 radian, the arc length equals the radius (b) An angle of 2 radians has an arc length
(c) A full revolution is or about 6.28 radians.

To elaborate on this idea, consider two circles, one with radius 2 and the other with radius 3. Recall the circumference of
a circle is where is the radius. The smaller circle then has circumference and the larger has
circumference Now we draw a angle on the two circles, as in Figure 13.

Figure 13 A angle contains one-eighth of the circumference of a circle, regardless of the radius.

Notice what happens if we find the ratio of the arc length divided by the radius of the circle.

Since both ratios are the angle measures of both circles are the same, even though the arc length and radius differ.

Radians

One radian is the measure of the central angle of a circle such that the length of the arc between the initial side and
the terminal side is equal to the radius of the circle. A full revolution equals radians. A half revolution
is equivalent to radians.

The radian measure of an angle is the ratio of the length of the arc subtended by the angle to the radius of the circle.
In other words, if is the length of an arc of a circle, and is the radius of the circle, then the central angle containing
that arc measures radians. In a circle of radius 1, the radian measure corresponds to the length of the arc.
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Q&A A measure of 1 radian looks to be about Is that correct?

Yes. It is approximately Because radians equals radian equals

Using Radians
Because radian measure is the ratio of two lengths, it is a unitless measure. For example, in Figure 12, suppose the
radius were 2 inches and the distance along the arc were also 2 inches. When we calculate the radian measure of the
angle, the “inches” cancel, and we have a result without units. Therefore, it is not necessary to write the label “radians”
after a radian measure, and if we see an angle that is not labeled with “degrees” or the degree symbol, we can assume
that it is a radian measure.

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 rotation equals 360 degrees,
We can also track one rotation around a circle by finding the circumference, and for the unit circle
These two different ways to rotate around a circle give us a way to convert from degrees to radians.

Identifying Special Angles Measured in Radians
In addition to knowing the measurements in degrees and radians of a quarter revolution, a half revolution, and a full
revolution, there are other frequently encountered angles in one revolution of a circle with which we should be familiar.
It is common to encounter multiples of 30, 45, 60, and 90 degrees. These values are shown in Figure 14. Memorizing
these angles will be very useful as we study the properties associated with angles.

Figure 14 Commonly encountered angles measured in degrees

Now, we can list the corresponding radian values for the common measures of a circle corresponding to those listed in
Figure 14, which are shown in Figure 15. Be sure you can verify each of these measures.
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Figure 15 Commonly encountered angles measured in radians

EXAMPLE 2

Finding a Radian Measure
Find the radian measure of one-third of a full rotation.

Solution
For any circle, the arc length along such a rotation would be one-third of the circumference. We know that

So,

The radian measure would be the arc length divided by the radius.

TRY IT #2 Find the radian measure of three-fourths of a full rotation.

Converting Between Radians and Degrees
Because degrees and radians both measure angles, we need to be able to convert between them. We can easily do so
using a proportion where is the measure of the angle in degrees and is the measure of the angle in radians.

This proportion shows that the measure of angle in degrees divided by 180 equals the measure of angle in radians
divided by Or, phrased another way, degrees is to 180 as radians is to
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Converting between Radians and Degrees

To convert between degrees and radians, use the proportion

EXAMPLE 3

Converting Radians to Degrees
Convert each radian measure to degrees.

ⓐ ⓑ 3

Solution
Because we are given radians and we want degrees, we should set up a proportion and solve it.

ⓐ We use the proportion, substituting the given information.

ⓑ We use the proportion, substituting the given information.

TRY IT #3 Convert radians to degrees.

EXAMPLE 4

Converting Degrees to Radians
Convert degrees to radians.

Solution
In this example, we start with degrees and want radians, so we again set up a proportion, but we substitute the given
information into a different part of the proportion.

Analysis
Another way to think about this problem is by remembering that Because we can find that

is

TRY IT #4 Convert to radians.
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Finding Coterminal Angles
Converting between degrees and radians can make working with angles easier in some applications. For other
applications, we may need another type of conversion. Negative angles and angles greater than a full revolution are
more awkward to work with than those in the range of to or to It would be convenient to replace those
out-of-range angles with a corresponding angle within the range of a single revolution.

It is possible for more than one angle to have the same terminal side. Look at Figure 16. The angle of is a positive
angle, measured counterclockwise. The angle of is a negative angle, measured clockwise. But both angles have
the same terminal side. If two angles in standard position have the same terminal side, they are coterminal angles. Every
angle greater than or less than is coterminal with an angle between and and it is often more convenient
to find the coterminal angle within the range of to than to work with an angle that is outside that range.

Figure 16 An angle of and an angle of are coterminal angles.

Any angle has infinitely many coterminal angles because each time we add to that angle—or subtract from
it—the resulting value has a terminal side in the same location. For example, and are coterminal for this
reason, as is

An angle’s reference angle is the measure of the smallest, positive, acute angle formed by the terminal side of the
angle and the horizontal axis. Thus positive reference angles have terminal sides that lie in the first quadrant and can
be used as models for angles in other quadrants. See Figure 17 for examples of reference angles for angles in different
quadrants.

Figure 17

Coterminal and Reference Angles

Coterminal angles are two angles in standard position that have the same terminal side.
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An angle’s reference angle is the size of the smallest acute angle, formed by the terminal side of the angle and
the horizontal axis.

HOW TO

Given an angle greater than find a coterminal angle between and

1. Subtract from the given angle.
2. If the result is still greater than subtract again till the result is between and
3. The resulting angle is coterminal with the original angle.

EXAMPLE 5

Finding an Angle Coterminal with an Angle of Measure Greater Than
Find the least positive angle that is coterminal with an angle measuring where

Solution
An angle with measure is coterminal with an angle with measure but is still greater than

so we subtract again to find another coterminal angle:

The angle is coterminal with To put it another way, equals plus two full rotations, as shown in
Figure 18.

Figure 18

TRY IT #5 Find an angle that is coterminal with an angle measuring where

HOW TO

Given an angle with measure less than find a coterminal angle having a measure between and

1. Add to the given angle.
2. If the result is still less than add again until the result is between and
3. The resulting angle is coterminal with the original angle.
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EXAMPLE 6

Finding an Angle Coterminal with an Angle Measuring Less Than
Show the angle with measure on a circle and find a positive coterminal angle such that

Solution
Since is half of we can start at the positive horizontal axis and measure clockwise half of a angle.

Because we can find coterminal angles by adding or subtracting a full rotation of we can find a positive coterminal
angle here by adding

We can then show the angle on a circle, as in Figure 19.

Figure 19

TRY IT #6 Find an angle that is coterminal with an angle measuring such that

Finding Coterminal Angles Measured in Radians
We can find coterminal angles measured in radians in much the same way as we have found them using degrees. In
both cases, we find coterminal angles by adding or subtracting one or more full rotations.

HOW TO

Given an angle greater than find a coterminal angle between 0 and

1. Subtract from the given angle.
2. If the result is still greater than subtract again until the result is between and
3. The resulting angle is coterminal with the original angle.

EXAMPLE 7

Finding Coterminal Angles Using Radians
Find an angle that is coterminal with where

Solution
When working in degrees, we found coterminal angles by adding or subtracting 360 degrees, a full rotation. Likewise, in
radians, we can find coterminal angles by adding or subtracting full rotations of radians:

The angle is coterminal, but not less than so we subtract another rotation.
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The angle is coterminal with as shown in Figure 20.

Figure 20

TRY IT #7 Find an angle of measure that is coterminal with an angle of measure where

Determining the Length of an Arc
Recall that the radian measure of an angle was defined as the ratio of the arc length of a circular arc to the radius of
the circle, From this relationship, we can find arc length along a circle, given an angle.

Arc Length on a Circle

In a circle of radius r, the length of an arc subtended by an angle with measure in radians, shown in Figure 21, is

Figure 21

HOW TO

Given a circle of radius calculate the length of the arc subtended by a given angle of measure

1. If necessary, convert to radians.
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2. Multiply the radius

EXAMPLE 8

Finding the Length of an Arc
Assume the orbit of Mercury around the sun is a perfect circle. Mercury is approximately 36 million miles from the sun.

ⓐ In one Earth day, Mercury completes 0.0114 of its total revolution. How many miles does it travel in one day?

ⓑ Use your answer from part (a) to determine the radian measure for Mercury’s movement in one Earth day.
Solution

ⓐ Let’s begin by finding the circumference of Mercury’s orbit.

Since Mercury completes 0.0114 of its total revolution in one Earth day, we can now find the distance traveled.

ⓑ Now, we convert to radians.

TRY IT #8 Find the arc length along a circle of radius 10 units subtended by an angle of

Finding the Area of a Sector of a Circle
In addition to arc length, we can also use angles to find the area of a sector of a circle. A sector is a region of a circle
bounded by two radii and the intercepted arc, like a slice of pizza or pie. Recall that the area of a circle with radius can
be found using the formula If the two radii form an angle of measured in radians, then is the ratio of the
angle measure to the measure of a full rotation and is also, therefore, the ratio of the area of the sector to the area of
the circle. Thus, the area of a sector is the fraction multiplied by the entire area. (Always remember that this formula
only applies if is in radians.)

Area of a Sector

The area of a sector of a circle with radius subtended by an angle measured in radians, is

See Figure 22.
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Figure 22 The area of the sector equals half the square of the radius times the central angle measured in radians.

HOW TO

Given a circle of radius find the area of a sector defined by a given angle

1. If necessary, convert to radians.

2. Multiply half the radian measure of by the square of the radius

EXAMPLE 9

Finding the Area of a Sector
An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees, as shown in Figure 23. What is the
area of the sector of grass the sprinkler waters?

Figure 23 The sprinkler sprays 20 ft within an arc of

Solution
First, we need to convert the angle measure into radians. Because 30 degrees is one of our special angles, we already
know the equivalent radian measure, but we can also convert:

The area of the sector is then

So the area is about
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TRY IT #9 In central pivot irrigation, which creates the field shapes similar to the image at the beginning of
Equations and Inequalities, a large irrigation pipe on wheels rotates around a center point. A
farmer has a central pivot system with a radius of 400 meters. If water restrictions only allow her
to water 150 thousand square meters a day, what angle should she set the system to cover? Write
the answer in radian measure to two decimal places.

Use Linear and Angular Speed to Describe Motion on a Circular Path
In addition to finding the area of a sector, we can use angles to describe the speed of a moving object. An object
traveling in a circular path has two types of speed. Linear speed is speed along a straight path and can be determined
by the distance it moves along (its displacement) in a given time interval. For instance, if a wheel with radius 5 inches
rotates once a second, a point on the edge of the wheel moves a distance equal to the circumference, or inches,
every second. So the linear speed of the point is in./s. The equation for linear speed is as follows where is linear
speed, is displacement, and is time.

Angular speed results from circular motion and can be determined by the angle through which a point rotates in a given
time interval. In other words, angular speed is angular rotation per unit time. So, for instance, if a gear makes a full
rotation every 4 seconds, we can calculate its angular speed as 90 degrees per second. Angular speed can
be given in radians per second, rotations per minute, or degrees per hour for example. The equation for angular speed
is as follows, where (read as omega) is angular speed, is the angle traversed, and is time.

Combining the definition of angular speed with the arc length equation, we can find a relationship between
angular and linear speeds. The angular speed equation can be solved for giving Substituting this into the arc
length equation gives:

Substituting this into the linear speed equation gives:

Angular and Linear Speed

As a point moves along a circle of radius its angular speed, is the angular rotation per unit time,

The linear speed, of the point can be found as the distance traveled, arc length per unit time,

When the angular speed is measured in radians per unit time, linear speed and angular speed are related by the
equation

This equation states that the angular speed in radians, representing the amount of rotation occurring in a unit of
time, can be multiplied by the radius to calculate the total arc length traveled in a unit of time, which is the definition
of linear speed.
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HOW TO

Given the amount of angle rotation and the time elapsed, calculate the angular speed.

1. If necessary, convert the angle measure to radians.
2. Divide the angle in radians by the number of time units elapsed:
3. The resulting speed will be in radians per time unit.

Water wheels have been used for thousands of years to transfer the power of flowing water to other devices. The image
below depicts the design of the the 3rd century Roman water wheel in Hierapolis, a city in what is now Turkey. Water
turned the wheel, which in turn rotated a crank connected to two saws used to cut blocks. These design elements were
used in water wheel applications throughout the world, and even provided the underlying principle for the steam
engine, invented about 1500 years later.

EXAMPLE 10

Finding Angular Speed
A water wheel, shown in Figure 24, completes 1 rotation every 5 seconds. Find the angular speed in radians per second.

Figure 24

Solution
The wheel completes 1 rotation, or passes through an angle of radians in 5 seconds, so the angular speed would be

radians per second.

TRY IT #10 A vintage vinyl record is played on a turntable rotating clockwise at a rate of 45 rotations per
minute. Find the angular speed in radians per second.

HOW TO

Given the radius of a circle, an angle of rotation, and a length of elapsed time, determine the linear speed.

1. Convert the total rotation to radians if necessary.
2. Divide the total rotation in radians by the elapsed time to find the angular speed: apply
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3. Multiply the angular speed by the length of the radius to find the linear speed, expressed in terms of the length
unit used for the radius and the time unit used for the elapsed time: apply

EXAMPLE 11

Finding a Linear Speed
A bicycle has wheels 28 inches in diameter. A tachometer determines the wheels are rotating at 180 RPM (revolutions per
minute). Find the speed the bicycle is traveling down the road.

Solution
Here, we have an angular speed and need to find the corresponding linear speed, since the linear speed of the outside
of the tires is the speed at which the bicycle travels down the road.

We begin by converting from rotations per minute to radians per minute. It can be helpful to utilize the units to make
this conversion:

Using the formula from above along with the radius of the wheels, we can find the linear speed:

Remember that radians are a unitless measure, so it is not necessary to include them.

Finally, we may wish to convert this linear speed into a more familiar measurement, like miles per hour.

TRY IT #11 A satellite is rotating around Earth at 0.25 radian per hour at an altitude of 242 km above Earth. If
the radius of Earth is 6378 kilometers, find the linear speed of the satellite in kilometers per hour.

MEDIA

Access these online resources for additional instruction and practice with angles, arc length, and areas of sectors.

Angles in Standard Position (http://openstax.org/l/standardpos)
Angle of Rotation (http://openstax.org/l/angleofrotation)
Coterminal Angles (http://openstax.org/l/coterminal)
Determining Coterminal Angles (http://openstax.org/l/detcoterm)
Positive and Negative Coterminal Angles (http://openstax.org/l/posnegcoterm)
Radian Measure (http://openstax.org/l/radianmeas)
Coterminal Angles in Radians (http://openstax.org/l/cotermrad)
Arc Length and Area of a Sector (http://openstax.org/l/arclength)

7.1 SECTION EXERCISES
Verbal

1. Draw an angle in standard
position. Label the vertex,
initial side, and terminal
side.

2. Explain why there are an
infinite number of angles
that are coterminal to a
certain angle.

3. State what a positive or
negative angle signifies, and
explain how to draw each.
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4. How does radian measure
of an angle compare to the
degree measure? Include an
explanation of 1 radian in
your paragraph.

5. Explain the differences
between linear speed and
angular speed when
describing motion along a
circular path.

Graphical

For the following exercises, draw an angle in standard position with the given measure.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.

18. 19. 20.

21.

For the following exercises, refer to Figure 25. Round to two decimal places.

Figure 25

22. Find the arc length. 23. Find the area of the sector.
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For the following exercises, refer to Figure 26. Round to two decimal places.

Figure 26

24. Find the arc length. 25. Find the area of the sector.

Algebraic

For the following exercises, convert angles in radians to degrees.

26. radians 27. radians 28. radians

29. radians 30. radians 31. radians

32. radians

For the following exercises, convert angles in degrees to radians.

33. 34. 35.

36. 37. 38.

39.

For the following exercises, use the given information to find the length of a circular arc. Round to two decimal places.

40. Find the length of the arc
of a circle of radius 12
inches subtended by a
central angle of radians.

41. Find the length of the arc
of a circle of radius 5.02
miles subtended by the
central angle of

42. Find the length of the arc
of a circle of diameter 14
meters subtended by the
central angle of

43. Find the length of the arc
of a circle of radius 10
centimeters subtended by
the central angle of

44. Find the length of the arc
of a circle of radius 5
inches subtended by the
central angle of

45. Find the length of the arc
of a circle of diameter 12
meters subtended by the
central angle is
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For the following exercises, use the given information to find the area of the sector. Round to four decimal places.

46. A sector of a circle has a
central angle of and a
radius 6 cm.

47. A sector of a circle has a
central angle of and a
radius of 20 cm.

48. A sector of a circle with
diameter 10 feet and an
angle of radians.

49. A sector of a circle with
radius of 0.7 inches and an
angle of radians.

For the following exercises, find the angle between and that is coterminal to the given angle.

50. 51. 52.

53.

For the following exercises, find the angle between 0 and in radians that is coterminal to the given angle.

54. 55. 56.

57.

Real-World Applications

58. A truck with 32-inch
diameter wheels is
traveling at 60 mi/h. Find
the angular speed of the
wheels in rad/min. How
many revolutions per
minute do the wheels
make?

59. A bicycle with 24-inch
diameter wheels is
traveling at 15 mi/h. Find
the angular speed of the
wheels in rad/min. How
many revolutions per
minute do the wheels
make?

60. A wheel of radius 8 inches
is rotating 15°/s. What is
the linear speed the
angular speed in RPM, and
the angular speed in rad/s?

61. A wheel of radius inches
is rotating rad/s. What
is the linear speed the
angular speed in RPM, and
the angular speed in deg/
s?

62. A computer hard drive disc
has diameter of 120
millimeters. When playing
audio, the angular speed
varies to keep the linear
speed constant where the
disc is being read. When
reading along the outer
edge of the disc, the
angular speed is about 200
RPM (revolutions per
minute). Find the linear
speed.

63. When being burned in a
writable CD-R drive, the
angular speed of a CD is
often much faster than
when playing audio, but
the angular speed still
varies to keep the linear
speed constant where the
disc is being written. When
writing along the outer
edge of the disc, the
angular speed of one drive
is about 4800 RPM
(revolutions per minute).
Find the linear speed if the
CD has diameter of 120
millimeters.
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64. A person is standing on the
equator of Earth (radius
3960 miles). What are their
linear and angular speeds?

65. Find the distance along an
arc on the surface of Earth
that subtends a central
angle of 5 minutes

.
The radius of Earth is 3960
miles.

66. Find the distance along an
arc on the surface of Earth
that subtends a central
angle of 7 minutes

.
The radius of Earth is
miles.

67. Consider a clock with an
hour hand and minute
hand. What is the measure
of the angle the minute
hand traces in minutes?

Extensions

68. Two cities have the same
longitude. The latitude of
city A is 9.00 degrees north
and the latitude of city B is
30.00 degree north.
Assume the radius of the
earth is 3960 miles. Find
the distance between the
two cities.

69. A city is located at 40
degrees north latitude.
Assume the radius of the
earth is 3960 miles and the
earth rotates once every 24
hours. Find the linear
speed of a person who
resides in this city.

70. A city is located at 75
degrees north latitude.
Assume the radius of the
earth is 3960 miles and the
earth rotates once every 24
hours. Find the linear
speed of a person who
resides in this city.

71. Find the linear speed of the
moon if the average
distance between the earth
and moon is 239,000 miles,
assuming the orbit of the
moon is circular and
requires about 28 days.
Express answer in miles
per hour.

72. A bicycle has wheels 28
inches in diameter. A
tachometer determines
that the wheels are
rotating at 180 RPM
(revolutions per minute).
Find the speed the bicycle
is travelling down the road.

73. A car travels 3 miles. Its
tires make 2640
revolutions. What is the
radius of a tire in inches?

74. A wheel on a tractor has a
24-inch diameter. How
many revolutions does the
wheel make if the tractor
travels 4 miles?

7.2 Right Triangle Trigonometry
Learning Objectives
In this section you will:

Use right triangles to evaluate trigonometric functions.
Find function values for and
Use equal cofunctions of complementary angles.
Use the definitions of trigonometric functions of any angle.
Use right-triangle trigonometry to solve applied problems.

Mt. Everest, which straddles the border between China and Nepal, is the tallest mountain in the world. Measuring its
height is no easy task. In fact, the actual measurement has been a source of controversy for hundreds of years. The
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measurement process involves the use of triangles and a branch of mathematics known as trigonometry. In this section,
we will define a new group of functions known as trigonometric functions, and find out how they can be used to
measure heights, such as those of the tallest mountains.

Using Right Triangles to Evaluate Trigonometric Functions
Figure 1 shows a right triangle with a vertical side of length and a horizontal side has length Notice that the triangle
is inscribed in a circle of radius 1. Such a circle, with a center at the origin and a radius of 1, is known as a unit circle.

Figure 1

We can define the trigonometric functions in terms an angle t and the lengths of the sides of the triangle. The adjacent
side is the side closest to the angle, x. (Adjacent means “next to.”) The opposite side is the side across from the angle, y.
The hypotenuse is the side of the triangle opposite the right angle, 1. These sides are labeled in Figure 2.

Figure 2 The sides of a right triangle in relation to angle

Given a right triangle with an acute angle of the first three trigonometric functions are listed.

A common mnemonic for remembering these relationships is SohCahToa, formed from the first letters of “Sine is
opposite over hypotenuse, Cosine is adjacent over hypotenuse, Tangent is opposite over adjacent.”

For the triangle shown in Figure 1, we have the following.

HOW TO

Given the side lengths of a right triangle and one of the acute angles, find the sine, cosine, and tangent of that
angle.

1. Find the sine as the ratio of the opposite side to the hypotenuse.
2. Find the cosine as the ratio of the adjacent side to the hypotenuse.
3. Find the tangent as the ratio of the opposite side to the adjacent side.
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EXAMPLE 1

Evaluating a Trigonometric Function of a Right Triangle
Given the triangle shown in Figure 3, find the value of

Figure 3

Solution
The side adjacent to the angle is 15, and the hypotenuse of the triangle is 17.

TRY IT #1 Given the triangle shown in Figure 4, find the value of

Figure 4

Reciprocal Functions
In addition to sine, cosine, and tangent, there are three more functions. These too are defined in terms of the sides of
the triangle.

Take another look at these definitions. These functions are the reciprocals of the first three functions.

When working with right triangles, keep in mind that the same rules apply regardless of the orientation of the triangle.
In fact, we can evaluate the six trigonometric functions of either of the two acute angles in the triangle in Figure 5. The
side opposite one acute angle is the side adjacent to the other acute angle, and vice versa.
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Figure 5 The side adjacent to one angle is opposite the other angle.

Many problems ask for all six trigonometric functions for a given angle in a triangle. A possible strategy to use is to find
the sine, cosine, and tangent of the angles first. Then, find the other trigonometric functions easily using the reciprocals.

HOW TO

Given the side lengths of a right triangle, evaluate the six trigonometric functions of one of the acute angles.

1. If needed, draw the right triangle and label the angle provided.
2. Identify the angle, the adjacent side, the side opposite the angle, and the hypotenuse of the right triangle.
3. Find the required function:

◦ sine as the ratio of the opposite side to the hypotenuse
◦ cosine as the ratio of the adjacent side to the hypotenuse
◦ tangent as the ratio of the opposite side to the adjacent side
◦ secant as the ratio of the hypotenuse to the adjacent side
◦ cosecant as the ratio of the hypotenuse to the opposite side
◦ cotangent as the ratio of the adjacent side to the opposite side

EXAMPLE 2

Evaluating Trigonometric Functions of Angles Not in Standard Position
Using the triangle shown in Figure 6, evaluate

Figure 6

Solution

Analysis
Another approach would have been to find sine, cosine, and tangent first. Then find their reciprocals to determine the
other functions.
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TRY IT #2 Using the triangle shown in Figure 7,evaluate

Figure 7

Finding Trigonometric Functions of Special Angles Using Side Lengths
It is helpful to evaluate the trigonometric functions as they relate to the special angles—multiples of and
Remember, however, that when dealing with right triangles, we are limited to angles between

Suppose we have a triangle, which can also be described as a triangle. The sides have lengths in

the relation The sides of a triangle, which can also be described as a triangle, have

lengths in the relation These relations are shown in Figure 8.

Figure 8 Side lengths of special triangles

We can then use the ratios of the side lengths to evaluate trigonometric functions of special angles.

HOW TO

Given trigonometric functions of a special angle, evaluate using side lengths.

1. Use the side lengths shown in Figure 8 for the special angle you wish to evaluate.
2. Use the ratio of side lengths appropriate to the function you wish to evaluate.
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EXAMPLE 3

Evaluating Trigonometric Functions of Special Angles Using Side Lengths
Find the exact value of the trigonometric functions of using side lengths.

Solution

TRY IT #3 Find the exact value of the trigonometric functions of using side lengths.

Using Equal Cofunction of Complements
If we look more closely at the relationship between the sine and cosine of the special angles, we notice a pattern. In a

right triangle with angles of and we see that the sine of namely is also the cosine of while the sine of

namely is also the cosine of

See Figure 9.

Figure 9 The sine of equals the cosine of and vice versa.

This result should not be surprising because, as we see from Figure 9, the side opposite the angle of is also the side

adjacent to so and are exactly the same ratio of the same two sides, and Similarly,

and are also the same ratio using the same two sides, and

The interrelationship between the sines and cosines of and also holds for the two acute angles in any right triangle,
since in every case, the ratio of the same two sides would constitute the sine of one angle and the cosine of the other.
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Since the three angles of a triangle add to and the right angle is the remaining two angles must also add up to
That means that a right triangle can be formed with any two angles that add to —in other words, any two
complementary angles. So we may state a cofunction identity: If any two angles are complementary, the sine of one is
the cosine of the other, and vice versa. This identity is illustrated in Figure 10.

Figure 10 Cofunction identity of sine and cosine of complementary angles

Using this identity, we can state without calculating, for instance, that the sine of equals the cosine of and that

the sine of equals the cosine of We can also state that if, for a given angle then as
well.

Cofunction Identities

The cofunction identities in radians are listed in Table 1.

Table 1

HOW TO

Given the sine and cosine of an angle, find the sine or cosine of its complement.

1. To find the sine of the complementary angle, find the cosine of the original angle.
2. To find the cosine of the complementary angle, find the sine of the original angle.

EXAMPLE 4

Using Cofunction Identities
If find

Solution
According to the cofunction identities for sine and cosine, we have the following.
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So

TRY IT #4 If find

Using Trigonometric Functions
In previous examples, we evaluated the sine and cosine in triangles where we knew all three sides. But the real power of
right-triangle trigonometry emerges when we look at triangles in which we know an angle but do not know all the sides.

HOW TO

Given a right triangle, the length of one side, and the measure of one acute angle, find the remaining sides.

1. For each side, select the trigonometric function that has the unknown side as either the numerator or the
denominator. The known side will in turn be the denominator or the numerator.

2. Write an equation setting the function value of the known angle equal to the ratio of the corresponding sides.
3. Using the value of the trigonometric function and the known side length, solve for the missing side length.

EXAMPLE 5

Finding Missing Side Lengths Using Trigonometric Ratios
Find the unknown sides of the triangle in Figure 11.

Figure 11

Solution
We know the angle and the opposite side, so we can use the tangent to find the adjacent side.

We rearrange to solve for

We can use the sine to find the hypotenuse.

Again, we rearrange to solve for
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TRY IT #5 A right triangle has one angle of and a hypotenuse of 20. Find the unknown sides and angle of

the triangle.

Using Right Triangle Trigonometry to Solve Applied Problems
Right-triangle trigonometry has many practical applications. For example, the ability to compute the lengths of sides of a
triangle makes it possible to find the height of a tall object without climbing to the top or having to extend a tape
measure along its height. We do so by measuring a distance from the base of the object to a point on the ground some
distance away, where we can look up to the top of the tall object at an angle. The angle of elevation of an object above
an observer relative to the observer is the angle between the horizontal and the line from the object to the observer's
eye. The right triangle this position creates has sides that represent the unknown height, the measured distance from
the base, and the angled line of sight from the ground to the top of the object. Knowing the measured distance to the
base of the object and the angle of the line of sight, we can use trigonometric functions to calculate the unknown height.

Similarly, we can form a triangle from the top of a tall object by looking downward. The angle of depression of an object
below an observer relative to the observer is the angle between the horizontal and the line from the object to the
observer's eye. See Figure 12.

Figure 12

HOW TO

Given a tall object, measure its height indirectly.

1. Make a sketch of the problem situation to keep track of known and unknown information.
2. Lay out a measured distance from the base of the object to a point where the top of the object is clearly visible.
3. At the other end of the measured distance, look up to the top of the object. Measure the angle the line of sight

makes with the horizontal.
4. Write an equation relating the unknown height, the measured distance, and the tangent of the angle of the line

of sight.
5. Solve the equation for the unknown height.

EXAMPLE 6

Measuring a Distance Indirectly
To find the height of a tree, a person walks to a point 30 feet from the base of the tree. She measures an angle of
between a line of sight to the top of the tree and the ground, as shown in Figure 13. Find the height of the tree.
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Figure 13

Solution
We know that the angle of elevation is and the adjacent side is 30 ft long. The opposite side is the unknown height.

The trigonometric function relating the side opposite to an angle and the side adjacent to the angle is the tangent. So we
will state our information in terms of the tangent of letting be the unknown height.

The tree is approximately 46 feet tall.

TRY IT #6 How long a ladder is needed to reach a windowsill 50 feet above the ground if the ladder rests
against the building making an angle of with the ground? Round to the nearest foot.

MEDIA

Access these online resources for additional instruction and practice with right triangle trigonometry.

Finding Trig Functions on Calculator (http://openstax.org/l/findtrigcal)
Finding Trig Functions Using a Right Triangle (http://openstax.org/l/trigrttri)
Relate Trig Functions to Sides of a Right Triangle (http://openstax.org/l/reltrigtri)
Determine Six Trig Functions from a Triangle (http://openstax.org/l/sixtrigfunc)
Determine Length of Right Triangle Side (http://openstax.org/l/rttriside)

7.2 SECTION EXERCISES
Verbal

1. For the given right triangle, label the adjacent side,
opposite side, and hypotenuse for the indicated
angle.

2. When a right triangle with a hypotenuse of 1 is
placed in a circle of radius 1, which sides of the
triangle correspond to the x- and y-coordinates?
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3. The tangent of an angle
compares which sides of the
right triangle?

4. What is the relationship
between the two acute
angles in a right triangle?

5. Explain the cofunction
identity.

Algebraic

For the following exercises, use cofunctions of complementary angles.

6. 7. 8.

9.

For the following exercises, find the lengths of the missing sides if side is opposite angle side is opposite angle
and side is the hypotenuse.

10. 11. 12.

13. 14. 15.

16.

Graphical

For the following exercises, use Figure 14 to evaluate each trigonometric function of angle

Figure 14

17. 18. 19.

20. 21. 22.

714 7 • The Unit Circle: Sine and Cosine Functions

Access for free at openstax.org



For the following exercises, use Figure 15 to evaluate each trigonometric function of angle

Figure 15

23. 24. 25.

26. 27. 28.

For the following exercises, solve for the unknown sides of the given triangle.

29. 30. 31.

Technology

For the following exercises, use a calculator to find the length of each side to four decimal places.

32. 33. 34.

35. 36.

37. 38. 39.

40. 41.
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Extensions

42. Find 43. Find 44. Find

45. Find 46. A radio tower is located 400
feet from a building. From
a window in the building, a
person determines that the
angle of elevation to the
top of the tower is and
that the angle of
depression to the bottom
of the tower is How
tall is the tower?

47. A radio tower is located 325
feet from a building. From
a window in the building, a
person determines that the
angle of elevation to the
top of the tower is and
that the angle of
depression to the bottom
of the tower is How
tall is the tower?

48. A 200-foot tall monument
is located in the distance.
From a window in a
building, a person
determines that the angle
of elevation to the top of
the monument is and
that the angle of
depression to the bottom
of the monument is
How far is the person from
the monument?

49. A 400-foot tall monument
is located in the distance.
From a window in a
building, a person
determines that the angle
of elevation to the top of
the monument is and
that the angle of
depression to the bottom
of the monument is
How far is the person from
the monument?

50. There is an antenna on the
top of a building. From a
location 300 feet from the
base of the building, the
angle of elevation to the
top of the building is
measured to be From
the same location, the
angle of elevation to the
top of the antenna is
measured to be Find
the height of the antenna.

51. There is lightning rod on
the top of a building. From
a location 500 feet from the
base of the building, the
angle of elevation to the
top of the building is
measured to be From
the same location, the
angle of elevation to the
top of the lightning rod is
measured to be Find
the height of the lightning
rod.
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Real-World Applications

52. A 33-ft ladder leans against
a building so that the angle
between the ground and
the ladder is How high
does the ladder reach up
the side of the building?

53. A 23-ft ladder leans against
a building so that the angle
between the ground and
the ladder is How high
does the ladder reach up
the side of the building?

54. The angle of elevation to
the top of a building in
Charlotte is found to be 9
degrees from the ground
at a distance of 1 mile from
the base of the building.
Using this information, find
the height of the building.

55. The angle of elevation to
the top of a building in
Seattle is found to be 2
degrees from the ground
at a distance of 2 miles
from the base of the
building. Using this
information, find the
height of the building.

56. Assuming that a 370-foot
tall giant redwood grows
vertically, if I walk a certain
distance from the tree and
measure the angle of
elevation to the top of the
tree to be how far
from the base of the tree
am I?

7.3 Unit Circle
Learning Objectives
In this section you will:

Find function values for the sine and cosine of and

Identify the domain and range of sine and cosine functions.
Find reference angles.
Use reference angles to evaluate trigonometric functions.

Figure 1 The Singapore Flyer was the world’s tallest Ferris wheel until being overtaken by the High Roller in Las Vegas
and the Ain Dubai in Dubai. (credit: ʺVibin JKʺ/Flickr)

Looking for a thrill? Then consider a ride on the Ain Dubai, the world's tallest Ferris wheel. Located in Dubai, the most
populous city and the financial and tourism hub of the United Arab Emirates, the wheel soars to 820 feet, about 1.5
tenths of a mile. Described as an observation wheel, riders enjoy spectacular views of the Burj Khalifa (the world's tallest
building) and the Palm Jumeirah (a human-made archipelago home to over 10,000 people and 20 resorts) as they travel
from the ground to the peak and down again in a repeating pattern. In this section, we will examine this type of
revolving motion around a circle. To do so, we need to define the type of circle first, and then place that circle on a
coordinate system. Then we can discuss circular motion in terms of the coordinate pairs.

Finding Trigonometric Functions Using the Unit Circle
We have already defined the trigonometric functions in terms of right triangles. In this section, we will redefine them in
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terms of the unit circle. Recall that a unit circle is a circle centered at the origin with radius 1, as shown in Figure 2. The
angle (in radians) that intercepts forms an arc of length Using the formula and knowing that we see
that for a unit circle,

The x- and y-axes divide the coordinate plane into four quarters called quadrants. We label these quadrants to mimic the
direction a positive angle would sweep. The four quadrants are labeled I, II, III, and IV.

For any angle we can label the intersection of the terminal side and the unit circle as by its coordinates, The
coordinates and will be the outputs of the trigonometric functions and respectively. This
means and

Figure 2 Unit circle where the central angle is radians

Unit Circle

A unit circle has a center at and radius In a unit circle, the length of the intercepted arc is equal to the radian
measure of the central angle

Let be the endpoint on the unit circle of an arc of arc length The coordinates of this point can be
described as functions of the angle.

Defining Sine and Cosine Functions from the Unit Circle
The sine function relates a real number to the y-coordinate of the point where the corresponding angle intercepts the
unit circle. More precisely, the sine of an angle equals the y-value of the endpoint on the unit circle of an arc of length
In Figure 2, the sine is equal to Like all functions, the sine function has an input and an output. Its input is the
measure of the angle; its output is the y-coordinate of the corresponding point on the unit circle.

The cosine function of an angle equals the x-value of the endpoint on the unit circle of an arc of length In Figure 3,
the cosine is equal to

Figure 3

Because it is understood that sine and cosine are functions, we do not always need to write them with parentheses:
is the same as and is the same as Likewise, is a commonly used shorthand notation for
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Be aware that many calculators and computers do not recognize the shorthand notation. When in doubt, use the extra
parentheses when entering calculations into a calculator or computer.

Sine and Cosine Functions

If is a real number and a point on the unit circle corresponds to a central angle then

HOW TO

Given a point P on the unit circle corresponding to an angle of find the sine and cosine.

1. The sine of is equal to the y-coordinate of point
2. The cosine of is equal to the x-coordinate of point

EXAMPLE 1

Finding Function Values for Sine and Cosine
Point is a point on the unit circle corresponding to an angle of as shown in Figure 4. Find and

Figure 4

Solution

We know that is the x-coordinate of the corresponding point on the unit circle and is the y-coordinate of the
corresponding point on the unit circle. So:

TRY IT #1 A certain angle corresponds to a point on the unit circle at as shown in Figure 5.

Find and
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Figure 5

Finding Sines and Cosines of Angles on an Axis
For quadrantral angles, the corresponding point on the unit circle falls on the x- or y-axis. In that case, we can easily
calculate cosine and sine from the values of and

EXAMPLE 2

Calculating Sines and Cosines along an Axis
Find and

Solution
Moving counterclockwise around the unit circle from the positive x-axis brings us to the top of the circle, where the

coordinates are as shown in Figure 6.

Figure 6

We can then use our definitions of cosine and sine.

The cosine of is 0; the sine of is 1.

TRY IT #2 Find cosine and sine of the angle
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The Pythagorean Identity
Now that we can define sine and cosine, we will learn how they relate to each other and the unit circle. Recall that the
equation for the unit circle is Because and we can substitute for and to get

This equation, is known as the Pythagorean Identity. See Figure 7.

Figure 7

We can use the Pythagorean Identity to find the cosine of an angle if we know the sine, or vice versa. However, because
the equation yields two solutions, we need additional knowledge of the angle to choose the solution with the correct
sign. If we know the quadrant where the angle is, we can easily choose the correct solution.

Pythagorean Identity

The Pythagorean Identity states that, for any real number

HOW TO

Given the sine of some angle and its quadrant location, find the cosine of

1. Substitute the known value of into the Pythagorean Identity.
2. Solve for
3. Choose the solution with the appropriate sign for the x-values in the quadrant where is located.

EXAMPLE 3

Finding a Cosine from a Sine or a Sine from a Cosine
If and is in the second quadrant, find

Solution
If we drop a vertical line from the point on the unit circle corresponding to we create a right triangle, from which we
can see that the Pythagorean Identity is simply one case of the Pythagorean Theorem. See Figure 8.
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Figure 8

Substituting the known value for sine into the Pythagorean Identity,

Because the angle is in the second quadrant, we know the x-value is a negative real number, so the cosine is also
negative.

TRY IT #3 If and is in the fourth quadrant, find

Finding Sines and Cosines of Special Angles
We have already learned some properties of the special angles, such as the conversion from radians to degrees, and we
found their sines and cosines using right triangles. We can also calculate sines and cosines of the special angles using
the Pythagorean Identity.

Finding Sines and Cosines of Angles
First, we will look at angles of or as shown in Figure 9. A triangle is an isosceles triangle, so the x-
and y-coordinates of the corresponding point on the circle are the same. Because the x- and y-values are the same, the
sine and cosine values will also be equal.

Figure 9

At which is 45 degrees, the radius of the unit circle bisects the first quadrantal angle. This means the radius lies
along the line A unit circle has a radius equal to 1 so the right triangle formed below the line has sides
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and and radius = 1. See Figure 10.

Figure 10

From the Pythagorean Theorem we get

We can then substitute

Next we combine like terms.

And solving for we get

In quadrant I,

At or 45 degrees,

If we then rationalize the denominators, we get

Therefore, the coordinates of a point on a circle of radius at an angle of are

Finding Sines and Cosines of and Angles
Next, we will find the cosine and sine at an angle of or First, we will draw a triangle inside a circle with one side at
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an angle of and another at an angle of as shown in Figure 11. If the resulting two right triangles are combined
into one large triangle, notice that all three angles of this larger triangle will be as shown in Figure 12.

Figure 11

Figure 12

Because all the angles are equal, the sides are also equal. The vertical line has length and since the sides are all
equal, we can also conclude that or Since

And since in our unit circle,

Using the Pythagorean Identity, we can find the cosine value.

The coordinates for the point on a circle of radius at an angle of are At the radius of

the unit circle, 1, serves as the hypotenuse of a 30-60-90 degree right triangle, as shown in Figure 13. Angle has
measure At point we draw an angle with measure of We know the angles in a triangle sum to so
the measure of angle is also Now we have an equilateral triangle. Because each side of the equilateral triangle

is the same length, and we know one side is the radius of the unit circle, all sides must be of length 1.
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Figure 13

The measure of angle is 30°. Angle is double angle so its measure is 60°. is the perpendicular
bisector of so it cuts in half. This means that is the radius, or Notice that is the x-coordinate of
point which is at the intersection of the 60° angle and the unit circle. This gives us a triangle with hypotenuse of
1 and side of length

From the Pythagorean Theorem, we get

Substituting we get

Solving for we get

Since has the terminal side in quadrant I where the y-coordinate is positive, we choose the positive value.

At (60°), the coordinates for the point on a circle of radius at an angle of are so we can find

the sine and cosine.

We have now found the cosine and sine values for all of the most commonly encountered angles in the first quadrant of
the unit circle. Table 1 summarizes these values.

Angle or or or or

Table 1
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Cosine 1 0

Sine 0 1

Table 1

Figure 14 shows the common angles in the first quadrant of the unit circle.

Figure 14

Using a Calculator to Find Sine and Cosine
To find the cosine and sine of angles other than the special angles, we turn to a computer or calculator. Be aware: Most
calculators can be set into “degree” or “radian” mode, which tells the calculator the units for the input value. When we
evaluate on our calculator, it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the
cosine of 30 radians if the calculator is in radian mode.

HOW TO

Given an angle in radians, use a graphing calculator to find the cosine.

1. If the calculator has degree mode and radian mode, set it to radian mode.
2. Press the COS key.
3. Enter the radian value of the angle and press the close-parentheses key ")".
4. Press ENTER.

EXAMPLE 4

Using a Graphing Calculator to Find Sine and Cosine
Evaluate using a graphing calculator or computer.

Solution
Enter the following keystrokes:
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Analysis
We can find the cosine or sine of an angle in degrees directly on a calculator with degree mode. For calculators or
software that use only radian mode, we can find the sine of for example, by including the conversion factor to
radians as part of the input:

TRY IT #4 Evaluate

Identifying the Domain and Range of Sine and Cosine Functions
Now that we can find the sine and cosine of an angle, we need to discuss their domains and ranges. What are the
domains of the sine and cosine functions? That is, what are the smallest and largest numbers that can be inputs of the
functions? Because angles smaller than and angles larger than can still be graphed on the unit circle and have real
values of and there is no lower or upper limit to the angles that can be inputs to the sine and cosine functions.
The input to the sine and cosine functions is the rotation from the positive x-axis, and that may be any real number.

What are the ranges of the sine and cosine functions? What are the least and greatest possible values for their output?
We can see the answers by examining the unit circle, as shown in Figure 15. The bounds of the x-coordinate are
The bounds of the y-coordinate are also Therefore, the range of both the sine and cosine functions is

Figure 15

Finding Reference Angles
We have discussed finding the sine and cosine for angles in the first quadrant, but what if our angle is in another
quadrant? For any given angle in the first quadrant, there is an angle in the second quadrant with the same sine value.
Because the sine value is the y-coordinate on the unit circle, the other angle with the same sine will share the same
y-value, but have the opposite x-value. Therefore, its cosine value will be the opposite of the first angle’s cosine value.

Likewise, there will be an angle in the fourth quadrant with the same cosine as the original angle. The angle with the
same cosine will share the same x-value but will have the opposite y-value. Therefore, its sine value will be the opposite
of the original angle’s sine value.

As shown in Figure 16, angle has the same sine value as angle the cosine values are opposites. Angle has the same
cosine value as angle the sine values are opposites.
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Figure 16

Recall that an angle’s reference angle is the acute angle, formed by the terminal side of the angle and the horizontal
axis. A reference angle is always an angle between and or and radians. As we can see from Figure 17, for any
angle in quadrants II, III, or IV, there is a reference angle in quadrant I.

Figure 17

HOW TO

Given an angle between and find its reference angle.

1. An angle in the first quadrant is its own reference angle.
2. For an angle in the second or third quadrant, the reference angle is or
3. For an angle in the fourth quadrant, the reference angle is or
4. If an angle is less than or greater than add or subtract as many times as needed to find an equivalent

angle between and

EXAMPLE 5

Finding a Reference Angle
Find the reference angle of as shown in Figure 18.
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Figure 18

Solution
Because is in the third quadrant, the reference angle is

TRY IT #5 Find the reference angle of

Using Reference Angles
Now let’s take a moment to reconsider the Ferris wheel introduced at the beginning of this section. Suppose a rider
snaps a photograph while stopped twenty feet above ground level. The rider then rotates three-quarters of the way
around the circle. What is the rider’s new elevation? To answer questions such as this one, we need to evaluate the sine
or cosine functions at angles that are greater than 90 degrees or at a negative angle. Reference angles make it possible
to evaluate trigonometric functions for angles outside the first quadrant. They can also be used to find coordinates
for those angles. We will use the reference angle of the angle of rotation combined with the quadrant in which the
terminal side of the angle lies.

Using Reference Angles to Evaluate Trigonometric Functions
We can find the cosine and sine of any angle in any quadrant if we know the cosine or sine of its reference angle. The
absolute values of the cosine and sine of an angle are the same as those of the reference angle. The sign depends on the
quadrant of the original angle. The cosine will be positive or negative depending on the sign of the x-values in that
quadrant. The sine will be positive or negative depending on the sign of the y-values in that quadrant.

Using Reference Angles to Find Cosine and Sine

Angles have cosines and sines with the same absolute value as their reference angles. The sign (positive or negative)
can be determined from the quadrant of the angle.

HOW TO

Given an angle in standard position, find the reference angle, and the cosine and sine of the original angle.

1. Measure the angle between the terminal side of the given angle and the horizontal axis. That is the reference
angle.

2. Determine the values of the cosine and sine of the reference angle.
3. Give the cosine the same sign as the x-values in the quadrant of the original angle.
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4. Give the sine the same sign as the y-values in the quadrant of the original angle.

EXAMPLE 6

Using Reference Angles to Find Sine and Cosine

ⓐ Using a reference angle, find the exact value of and

ⓑ Using the reference angle, find and
Solution

ⓐ is located in the second quadrant. The angle it makes with the x-axis is so the reference
angle is
This tells us that has the same sine and cosine values as except for the sign.

Since is in the second quadrant, the x-coordinate of the point on the circle is negative, so the cosine value is
negative. The y-coordinate is positive, so the sine value is positive.

ⓑ is in the third quadrant. Its reference angle is The cosine and sine of are both In the third
quadrant, both and are negative, so:

TRY IT #6 ⓐ Use the reference angle of to find and

ⓑ Use the reference angle of to find and

Using Reference Angles to Find Coordinates
Now that we have learned how to find the cosine and sine values for special angles in the first quadrant, we can use
symmetry and reference angles to fill in cosine and sine values for the rest of the special angles on the unit circle. They
are shown in Figure 19. Take time to learn the coordinates of all of the major angles in the first quadrant.

Figure 19 Special angles and coordinates of corresponding points on the unit circle

In addition to learning the values for special angles, we can use reference angles to find coordinates of any point
on the unit circle, using what we know of reference angles along with the identities
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First we find the reference angle corresponding to the given angle. Then we take the sine and cosine values of the
reference angle, and give them the signs corresponding to the y- and x-values of the quadrant.

HOW TO

Given the angle of a point on a circle and the radius of the circle, find the coordinates of the point.

1. Find the reference angle by measuring the smallest angle to the x-axis.
2. Find the cosine and sine of the reference angle.
3. Determine the appropriate signs for and in the given quadrant.

EXAMPLE 7

Using the Unit Circle to Find Coordinates
Find the coordinates of the point on the unit circle at an angle of

Solution
We know that the angle is in the third quadrant.

First, let’s find the reference angle by measuring the angle to the x-axis. To find the reference angle of an angle whose
terminal side is in quadrant III, we find the difference of the angle and

Next, we will find the cosine and sine of the reference angle.

We must determine the appropriate signs for x and y in the given quadrant. Because our original angle is in the third
quadrant, where both and are negative, both cosine and sine are negative.

Now we can calculate the coordinates using the identities and

The coordinates of the point are on the unit circle.

TRY IT #7 Find the coordinates of the point on the unit circle at an angle of

MEDIA

Access these online resources for additional instruction and practice with sine and cosine functions.

Trigonometric Functions Using the Unit Circle (http://openstax.org/l/trigunitcir)
Sine and Cosine from the Unit (http://openstax.org/l/sincosuc)
Sine and Cosine from the Unit Circle and Multiples of Pi Divided by Six (http://openstax.org/l/sincosmult)
Sine and Cosine from the Unit Circle and Multiples of Pi Divided by Four (http://openstax.org/l/sincosmult4)
Trigonometric Functions Using Reference Angles (http://openstax.org/l/trigrefang)
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7.3 SECTION EXERCISES
Verbal

1. Describe the unit circle. 2. What do the x- and
y-coordinates of the points
on the unit circle represent?

3. Discuss the difference
between a coterminal angle
and a reference angle.

4. Explain how the cosine of an
angle in the second
quadrant differs from the
cosine of its reference angle
in the unit circle.

5. Explain how the sine of an
angle in the second
quadrant differs from the
sine of its reference angle in
the unit circle.

Algebraic

For the following exercises, use the given sign of the sine and cosine functions to find the quadrant in which the terminal
point determined by lies.

6. and 7. and 8. and

9. and

For the following exercises, find the exact value of each trigonometric function.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22.

Numeric

For the following exercises, state the reference angle for the given angle.

23. 24. 25.

26. 27. 28.

29. 30. 31.

32. 33.
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For the following exercises, find the reference angle, the quadrant of the terminal side, and the sine and cosine of each
angle. If the angle is not one of the angles on the unit circle, use a calculator and round to three decimal places.

34. 35. 36.

37. 38. 39.

40. 41. 42.

43. 44. 45.

46. 47. 48.

49.

For the following exercises, find the requested value.

50. If and is in the
fourth quadrant, find

51. If and is in the
first quadrant, find

52. If and is in the
second quadrant, find

53. If and is in
the third quadrant, find

54. Find the coordinates of the
point on a circle with radius
15 corresponding to an
angle of

55. Find the coordinates of the
point on a circle with radius
20 corresponding to an
angle of

56. Find the coordinates of the
point on a circle with radius
8 corresponding to an
angle of

57. Find the coordinates of the
point on a circle with radius
16 corresponding to an
angle of

58. State the domain of the
sine and cosine functions.

59. State the range of the sine
and cosine functions.

Graphical

For the following exercises, use the given point on the unit circle to find the value of the sine and cosine of

60. 61. 62.
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63. 64. 65.

66. 67. 68.

69. 70. 71.

72. 73. 74.

75. 76. 77.
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78. 79.

Technology

For the following exercises, use a graphing calculator to evaluate.

80. 81. 82.

83. 84. 85.

86. 87. 88.

89.

Extensions

For the following exercises, evaluate.

90. 91. 92.

93. 94. 95.

96. 97. 98.

99.

Real-World Applications

For the following exercises, use this scenario: A child enters a carousel that takes one minute to revolve once around.
The child enters at the point that is, on the due north position. Assume the carousel revolves counter clockwise.

100. What are the coordinates
of the child after 45
seconds?

101. What are the coordinates
of the child after 90
seconds?

102. What are the coordinates
of the child after 125
seconds?
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103. When will the child have
coordinates

if the ride
lasts 6 minutes? (There
are multiple answers.)

104. When will the child have
coordinates
if the ride lasts 6 minutes?

7.4 The Other Trigonometric Functions
Learning Objectives
In this section you will:

Find exact values of the trigonometric functions secant, cosecant, tangent, and cotangent of and
Use reference angles to evaluate the trigonometric functions secant, tangent, and cotangent.
Use properties of even and odd trigonometric functions.
Recognize and use fundamental identities.
Evaluate trigonometric functions with a calculator.

A wheelchair ramp that meets the standards of the Americans with Disabilities Act must make an angle with the ground
whose tangent is or less, regardless of its length. A tangent represents a ratio, so this means that for every 1 inch of
rise, the ramp must have 12 inches of run. Trigonometric functions allow us to specify the shapes and proportions of
objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though
sine and cosine are the trigonometric functions most often used, there are four others. Together they make up the set of
six trigonometric functions. In this section, we will investigate the remaining functions.

Finding Exact Values of the Trigonometric Functions Secant, Cosecant, Tangent,
and Cotangent
We can also define the remaining functions in terms of the unit circle with a point corresponding to an angle of
as shown in Figure 1. As with the sine and cosine, we can use the coordinates to find the other functions.

Figure 1

The first function we will define is the tangent. The tangent of an angle is the ratio of the y-value to the x-value of the
corresponding point on the unit circle. In Figure 1, the tangent of angle is equal to Because the y-value is
equal to the sine of and the x-value is equal to the cosine of the tangent of angle can also be defined as

The tangent function is abbreviated as The remaining three functions can all be expressed as
reciprocals of functions we have already defined.

• The secant function is the reciprocal of the cosine function. In Figure 1, the secant of angle is equal to
The secant function is abbreviated as

• The cotangent function is the reciprocal of the tangent function. In Figure 1, the cotangent of angle is equal to
The cotangent function is abbreviated as

• The cosecant function is the reciprocal of the sine function. In Figure 1, the cosecant of angle is equal to
The cosecant function is abbreviated as

Tangent, Secant, Cosecant, and Cotangent Functions

If is a real number and is a point where the terminal side of an angle of radians intercepts the unit circle, then
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EXAMPLE 1

Finding Trigonometric Functions from a Point on the Unit Circle

The point is on the unit circle, as shown in Figure 2. Find and

Figure 2

Solution
Because we know the coordinates of the point on the unit circle indicated by angle we can use those coordinates
to find the six functions:

TRY IT #1 The point is on the unit circle, as shown in Figure 3. Find

and
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Figure 3

EXAMPLE 2

Finding the Trigonometric Functions of an Angle
Find and when

Solution

We have previously used the properties of equilateral triangles to demonstrate that and We
can use these values and the definitions of tangent, secant, cosecant, and cotangent as functions of sine and cosine to
find the remaining function values.

TRY IT #2 Find and when

Because we know the sine and cosine values for the common first-quadrant angles, we can find the other function
values for those angles as well by setting equal to the cosine and equal to the sine and then using the definitions of
tangent, secant, cosecant, and cotangent. The results are shown in Table 1.
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Angle

Cosine 1 0

Sine 0 1

Tangent 0 1 Undefined

Secant 1 2 Undefined

Cosecant Undefined 2 1

Cotangent Undefined 1 0

Table 1

Using Reference Angles to Evaluate Tangent, Secant, Cosecant, and Cotangent
We can evaluate trigonometric functions of angles outside the first quadrant using reference angles as we have already
done with the sine and cosine functions. The procedure is the same: Find the reference angle formed by the terminal
side of the given angle with the horizontal axis. The trigonometric function values for the original angle will be the same
as those for the reference angle, except for the positive or negative sign, which is determined by x- and y-values in the
original quadrant. Figure 4 shows which functions are positive in which quadrant.

To help remember which of the six trigonometric functions are positive in each quadrant, we can use the mnemonic
phrase “A Smart Trig Class.” Each of the four words in the phrase corresponds to one of the four quadrants, starting
with quadrant I and rotating counterclockwise. In quadrant I, which is “A,” all of the six trigonometric functions are
positive. In quadrant II, “Smart,” only sine and its reciprocal function, cosecant, are positive. In quadrant III, “Trig,” only
tangent and its reciprocal function, cotangent, are positive. Finally, in quadrant IV, “Class,” only cosine and its reciprocal
function, secant, are positive.

Figure 4 The trigonometric functions are each listed in the quadrants in which they are positive.

HOW TO

Given an angle not in the first quadrant, use reference angles to find all six trigonometric functions.

1. Measure the angle formed by the terminal side of the given angle and the horizontal axis. This is the reference
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angle.
2. Evaluate the function at the reference angle.
3. Observe the quadrant where the terminal side of the original angle is located. Based on the quadrant, determine

whether the output is positive or negative.

EXAMPLE 3

Using Reference Angles to Find Trigonometric Functions
Use reference angles to find all six trigonometric functions of

Solution
The angle between this angle’s terminal side and the x-axis is so that is the reference angle. Since is in the third
quadrant, where both and are negative, cosine, sine, secant, and cosecant will be negative, while tangent and
cotangent will be positive.

TRY IT #3 Use reference angles to find all six trigonometric functions of

Using Even and Odd Trigonometric Functions
To be able to use our six trigonometric functions freely with both positive and negative angle inputs, we should examine
how each function treats a negative input. As it turns out, there is an important difference among the functions in this
regard.

Consider the function shown in Figure 5. The graph of the function is symmetrical about the y-axis. All along
the curve, any two points with opposite x-values have the same function value. This matches the result of calculation:

and so on. So is an even function, a function such that two inputs that are
opposites have the same output. That means

Figure 5 The function is an even function.

Now consider the function shown in Figure 6. The graph is not symmetrical about the y-axis. All along the
graph, any two points with opposite x-values also have opposite y-values. So is an odd function, one such that
two inputs that are opposites have outputs that are also opposites. That means
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Figure 6 The function is an odd function.

We can test whether a trigonometric function is even or odd by drawing a unit circle with a positive and a negative angle,
as in Figure 7. The sine of the positive angle is The sine of the negative angle is The sine function, then, is an odd
function. We can test each of the six trigonometric functions in this fashion. The results are shown in Table 2.

Figure 7

Table 2

Even and Odd Trigonometric Functions

An even function is one in which

An odd function is one in which

Cosine and secant are even:

Sine, tangent, cosecant, and cotangent are odd:
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EXAMPLE 4

Using Even and Odd Properties of Trigonometric Functions
If the secant of angle is 2, what is the secant of

Solution
Secant is an even function. The secant of an angle is the same as the secant of its opposite. So if the secant of angle is
2, the secant of is also 2.

TRY IT #4 If the cotangent of angle is what is the cotangent of

Recognizing and Using Fundamental Identities
We have explored a number of properties of trigonometric functions. Now, we can take the relationships a step further,
and derive some fundamental identities. Identities are statements that are true for all values of the input on which they
are defined. Usually, identities can be derived from definitions and relationships we already know. For example, the
Pythagorean Identity we learned earlier was derived from the Pythagorean Theorem and the definitions of sine and
cosine.

Fundamental Identities

We can derive some useful identities from the six trigonometric functions. The other four trigonometric functions
can be related back to the sine and cosine functions using these basic relationships:

EXAMPLE 5

Using Identities to Evaluate Trigonometric Functions

ⓐ Given evaluate

ⓑ Given evaluate

Solution
Because we know the sine and cosine values for these angles, we can use identities to evaluate the other functions.
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ⓐ
ⓑ

TRY IT #5 Evaluate

EXAMPLE 6

Using Identities to Simplify Trigonometric Expressions
Simplify

Solution
We can simplify this by rewriting both functions in terms of sine and cosine.

By showing that can be simplified to we have, in fact, established a new identity.

TRY IT #6 Simplify

Alternate Forms of the Pythagorean Identity
We can use these fundamental identities to derive alternate forms of the Pythagorean Identity, One
form is obtained by dividing both sides by

The other form is obtained by dividing both sides by

Alternate Forms of the Pythagorean Identity
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EXAMPLE 7

Using Identities to Relate Trigonometric Functions
If and is in quadrant IV, as shown in Figure 8, find the values of the other five trigonometric functions.

Figure 8

Solution
We can find the sine using the Pythagorean Identity, and the remaining functions by relating them to
sine and cosine.

The sign of the sine depends on the y-values in the quadrant where the angle is located. Since the angle is in quadrant
IV, where the y-values are negative, its sine is negative,

The remaining functions can be calculated using identities relating them to sine and cosine.

TRY IT #7 If and find the values of the other five functions.

As we discussed at the beginning of the chapter, a function that repeats its values in regular intervals is known as a
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periodic function. The trigonometric functions are periodic. For the four trigonometric functions, sine, cosine, cosecant
and secant, a revolution of one circle, or will result in the same outputs for these functions. And for tangent and
cotangent, only a half a revolution will result in the same outputs.

Other functions can also be periodic. For example, the lengths of months repeat every four years. If represents the
length time, measured in years, and represents the number of days in February, then This pattern
repeats over and over through time. In other words, every four years, February is guaranteed to have the same number
of days as it did 4 years earlier. The positive number 4 is the smallest positive number that satisfies this condition and is
called the period. A period is the shortest interval over which a function completes one full cycle—in this example, the
period is 4 and represents the time it takes for us to be certain February has the same number of days.

Period of a Function

The period of a repeating function is the number representing the interval such that for any
value of

The period of the cosine, sine, secant, and cosecant functions is

The period of the tangent and cotangent functions is

EXAMPLE 8

Finding the Values of Trigonometric Functions
Find the values of the six trigonometric functions of angle based on Figure 9.

Figure 9

Solution

7.4 • The Other Trigonometric Functions 745



TRY IT #8 Find the values of the six trigonometric functions of angle based on Figure 10.

Figure 10

EXAMPLE 9

Finding the Value of Trigonometric Functions

If

Solution

TRY IT #9

Evaluating Trigonometric Functions with a Calculator
We have learned how to evaluate the six trigonometric functions for the common first-quadrant angles and to use them
as reference angles for angles in other quadrants. To evaluate trigonometric functions of other angles, we use a
scientific or graphing calculator or computer software. If the calculator has a degree mode and a radian mode, confirm
the correct mode is chosen before making a calculation.

Evaluating a tangent function with a scientific calculator as opposed to a graphing calculator or computer algebra
system is like evaluating a sine or cosine: Enter the value and press the TAN key. For the reciprocal functions, there may
not be any dedicated keys that say CSC, SEC, or COT. In that case, the function must be evaluated as the reciprocal of a
sine, cosine, or tangent.

If we need to work with degrees and our calculator or software does not have a degree mode, we can enter the degrees
multiplied by the conversion factor to convert the degrees to radians. To find the secant of we could press
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HOW TO

Given an angle measure in radians, use a scientific calculator to find the cosecant.

1. If the calculator has degree mode and radian mode, set it to radian mode.
2. Enter:
3. Enter the value of the angle inside parentheses.
4. Press the SIN key.
5. Press the = key.

HOW TO

Given an angle measure in radians, use a graphing utility/calculator to find the cosecant.

• If the graphing utility has degree mode and radian mode, set it to radian mode.
• Enter:
• Press the SIN key.
• Enter the value of the angle inside parentheses.
• Press the ENTER key.

EXAMPLE 10

Evaluating the Cosecant Using Technology
Evaluate the cosecant of

Solution
For a scientific calculator, enter information as follows:

TRY IT #10 Evaluate the cotangent of

MEDIA

Access these online resources for additional instruction and practice with other trigonometric functions.

Determing Trig Function Values (http://openstax.org/l/trigfuncval)
More Examples of Determining Trig Functions (http://openstax.org/l/moretrigfun)
Pythagorean Identities (http://openstax.org/l/pythagiden)
Trig Functions on a Calculator (http://openstax.org/l/trigcalc)
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7.4 SECTION EXERCISES
Verbal

1. On an interval of
can the sine and cosine
values of a radian measure
ever be equal? If so, where?

2. What would you estimate
the cosine of degrees to
be? Explain your reasoning.

3. For any angle in quadrant II,
if you knew the sine of the
angle, how could you
determine the cosine of the
angle?

4. Describe the secant
function.

5. Tangent and cotangent have
a period of What does
this tell us about the output
of these functions?

Algebraic

For the following exercises, find the exact value of each expression.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.

For the following exercises, use reference angles to evaluate the expression.

18. 19. 20.

21. 22. 23.

24. 25. 26.

27. 28. 29.

30. 31. 32.

33. 34. 35.

36. 37. 38. If and is in
quadrant II, find

and

748 7 • The Unit Circle: Sine and Cosine Functions

Access for free at openstax.org



39. If and is in
quadrant III, find

and

40. If , and , find 41. If and
find

and

42. If and
find

and

43. If what is the 44. If what is the

45. If what is the 46. If what is the 47. If what is the

48. If what is the

Graphical

For the following exercises, use the angle in the unit circle to find the value of the each of the six trigonometric functions.

49. 50. 51.

Technology

For the following exercises, use a graphing calculator to evaluate to three decimal places.

52. 53. 54.

55. 56. 57.

58. 59. 60.

61.
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Extensions

For the following exercises, use identities to evaluate the expression.

62. If and
find

63. If and
find

64. If and
find

65. If and
find

66. Determine whether the function
is even, odd, or neither.

67. Determine whether the function
is even, odd, or

neither.

68. Determine whether the function
is even, odd, or neither.

69. Determine whether the function
is even, odd, or neither.

For the following exercises, use identities to simplify the expression.

70. 71.

Real-World Applications

72. The amount of sunlight in a
certain city can be modeled
by the function

where
represents the hours of

sunlight, and is the day
of the year. Use the
equation to find how many
hours of sunlight there are
on February 11, the 42nd

day of the year. State the
period of the function.

73. The amount of sunlight in a
certain city can be modeled
by the function

where
represents the hours of

sunlight, and is the day
of the year. Use the
equation to find how many
hours of sunlight there are
on September 24, the
267th day of the year. State
the period of the function.

74. The equation

models the blood pressure,
where represents time

in seconds. (a) Find the
blood pressure after 15
seconds. (b) What are the
maximum and minimum
blood pressures?

75. The height of a piston, in
inches, can be modeled by
the equation

where
represents the crank angle.
Find the height of the
piston when the crank
angle is

76. The height of a piston, in
inches, can be modeled by
the equation

where
represents the crank angle.
Find the height of the
piston when the crank
angle is
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Chapter Review
Key Terms
adjacent side in a right triangle, the side between a given angle and the right angle
angle the union of two rays having a common endpoint
angle of depression the angle between the horizontal and the line from the object to the observer’s eye, assuming the

object is positioned lower than the observer
angle of elevation the angle between the horizontal and the line from the object to the observer’s eye, assuming the

object is positioned higher than the observer
angular speed the angle through which a rotating object travels in a unit of time
arc length the length of the curve formed by an arc
area of a sector area of a portion of a circle bordered by two radii and the intercepted arc; the fraction multiplied

by the area of the entire circle
cosecant the reciprocal of the sine function: on the unit circle,

cosine function the x-value of the point on a unit circle corresponding to a given angle
cotangent the reciprocal of the tangent function: on the unit circle,

coterminal angles description of positive and negative angles in standard position sharing the same terminal side
degree a unit of measure describing the size of an angle as one-360th of a full revolution of a circle
hypotenuse the side of a right triangle opposite the right angle
identities statements that are true for all values of the input on which they are defined
initial side the side of an angle from which rotation begins
linear speed the distance along a straight path a rotating object travels in a unit of time; determined by the arc length
measure of an angle the amount of rotation from the initial side to the terminal side
negative angle description of an angle measured clockwise from the positive x-axis
opposite side in a right triangle, the side most distant from a given angle
period the smallest interval of a repeating function such that
positive angle description of an angle measured counterclockwise from the positive x-axis
Pythagorean Identity a corollary of the Pythagorean Theorem stating that the square of the cosine of a given angle

plus the square of the sine of that angle equals 1
quadrantal angle an angle whose terminal side lies on an axis
radian the measure of a central angle of a circle that intercepts an arc equal in length to the radius of that circle
radian measure the ratio of the arc length formed by an angle divided by the radius of the circle
ray one point on a line and all points extending in one direction from that point; one side of an angle
reference angle the measure of the acute angle formed by the terminal side of the angle and the horizontal axis
secant the reciprocal of the cosine function: on the unit circle,
sine function the y-value of the point on a unit circle corresponding to a given angle
standard position the position of an angle having the vertex at the origin and the initial side along the positive x-axis
tangent the quotient of the sine and cosine: on the unit circle,
terminal side the side of an angle at which rotation ends
unit circle a circle with a center at and radius 1
vertex the common endpoint of two rays that form an angle

Key Equations

arc length

area of a sector

angular speed

linear speed

linear speed related to angular speed

7 • Chapter Review 751



Trigonometric Functions

Reciprocal Trigonometric Functions

Cofunction Identities

Cosine

Sine

Pythagorean Identity

Tangent function

Secant function

Cosecant function

Cotangent function

Key Concepts
7.1 Angles

• An angle is formed from the union of two rays, by keeping the initial side fixed and rotating the terminal side. The
amount of rotation determines the measure of the angle.

• An angle is in standard position if its vertex is at the origin and its initial side lies along the positive x-axis. A positive
angle is measured counterclockwise from the initial side and a negative angle is measured clockwise.

• To draw an angle in standard position, draw the initial side along the positive x-axis and then place the terminal side
according to the fraction of a full rotation the angle represents. See Example 1.

• In addition to degrees, the measure of an angle can be described in radians. See Example 2.

• To convert between degrees and radians, use the proportion See Example 3 and Example 4.
• Two angles that have the same terminal side are called coterminal angles.
• We can find coterminal angles by adding or subtracting or See Example 5 and Example 6.
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• Coterminal angles can be found using radians just as they are for degrees. See Example 7.
• The length of a circular arc is a fraction of the circumference of the entire circle. See Example 8.
• The area of sector is a fraction of the area of the entire circle. See Example 9.
• An object moving in a circular path has both linear and angular speed.
• The angular speed of an object traveling in a circular path is the measure of the angle through which it turns in a

unit of time. See Example 10.
• The linear speed of an object traveling along a circular path is the distance it travels in a unit of time. See Example

11.

7.2 Right Triangle Trigonometry

• We can define trigonometric functions as ratios of the side lengths of a right triangle. See Example 1.
• The same side lengths can be used to evaluate the trigonometric functions of either acute angle in a right triangle.

See Example 2.
• We can evaluate the trigonometric functions of special angles, knowing the side lengths of the triangles in which

they occur. See Example 3.
• Any two complementary angles could be the two acute angles of a right triangle.
• If two angles are complementary, the cofunction identities state that the sine of one equals the cosine of the other

and vice versa. See Example 4.
• We can use trigonometric functions of an angle to find unknown side lengths.
• Select the trigonometric function representing the ratio of the unknown side to the known side. See Example 5.
• Right-triangle trigonometry facilitates the measurement of inaccessible heights and distances.
• The unknown height or distance can be found by creating a right triangle in which the unknown height or distance

is one of the sides, and another side and angle are known. See Example 6.

7.3 Unit Circle

• Finding the function values for the sine and cosine begins with drawing a unit circle, which is centered at the origin
and has a radius of 1 unit.

• Using the unit circle, the sine of an angle equals the y-value of the endpoint on the unit circle of an arc of length
whereas the cosine of an angle equals the x-value of the endpoint. See Example 1.

• The sine and cosine values are most directly determined when the corresponding point on the unit circle falls on an
axis. See Example 2.

• When the sine or cosine is known, we can use the Pythagorean Identity to find the other. The Pythagorean Identity
is also useful for determining the sines and cosines of special angles. See Example 3.

• Calculators and graphing software are helpful for finding sines and cosines if the proper procedure for entering
information is known. See Example 4.

• The domain of the sine and cosine functions is all real numbers.
• The range of both the sine and cosine functions is
• The sine and cosine of an angle have the same absolute value as the sine and cosine of its reference angle.
• The signs of the sine and cosine are determined from the x- and y-values in the quadrant of the original angle.
• An angle’s reference angle is the size angle, formed by the terminal side of the angle and the horizontal axis. See

Example 5.
• Reference angles can be used to find the sine and cosine of the original angle. See Example 6.
• Reference angles can also be used to find the coordinates of a point on a circle. See Example 7.

7.4 The Other Trigonometric Functions

• The tangent of an angle is the ratio of the y-value to the x-value of the corresponding point on the unit circle.
• The secant, cotangent, and cosecant are all reciprocals of other functions. The secant is the reciprocal of the cosine

function, the cotangent is the reciprocal of the tangent function, and the cosecant is the reciprocal of the sine
function.

• The six trigonometric functions can be found from a point on the unit circle. See Example 1.
• Trigonometric functions can also be found from an angle. See Example 2.
• Trigonometric functions of angles outside the first quadrant can be determined using reference angles. See

Example 3.
• A function is said to be even if and odd if for all x in the domain of f.
• Cosine and secant are even; sine, tangent, cosecant, and cotangent are odd.
• Even and odd properties can be used to evaluate trigonometric functions. See Example 4.
• The Pythagorean Identity makes it possible to find a cosine from a sine or a sine from a cosine.
• Identities can be used to evaluate trigonometric functions. See Example 5 and Example 6.
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• Fundamental identities such as the Pythagorean Identity can be manipulated algebraically to produce new
identities. See Example 7.

• The trigonometric functions repeat at regular intervals.
• The period of a repeating function is the smallest interval such that for any value of
• The values of trigonometric functions can be found by mathematical analysis. See Example 8 and Example 9.
• To evaluate trigonometric functions of other angles, we can use a calculator or computer software. See Example 10.

Exercises
Review Exercises
Angles

For the following exercises, convert the angle measures to degrees.

1. 2.

For the following exercises, convert the angle measures to radians.

3. 4. 5. Find the length of an arc in a
circle of radius 7 meters
subtended by the central
angle of

6. Find the area of the sector
of a circle with diameter 32
feet and an angle of
radians.

For the following exercises, find the angle between and that is coterminal with the given angle.

7. 8.

For the following exercises, find the angle between 0 and in radians that is coterminal with the given angle.

9. 10.

For the following exercises, draw the angle provided in standard position on the Cartesian plane.

11. 12. 13.

14. 15. Find the linear speed of a
point on the equator of the
earth if the earth has a
radius of 3,960 miles and
the earth rotates on its axis
every 24 hours. Express
answer in miles per hour.
Round to the nearest
hundredth.

16. A car wheel with a
diameter of 18 inches spins
at the rate of 10
revolutions per second.
What is the car's speed in
miles per hour? Round to
the nearest hundredth.
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Right Triangle Trigonometry

For the following exercises, use side lengths to evaluate.

17. 18. 19.

20. 21.

For the following exercises, use the given information to find the lengths of the other two sides of the right triangle.

22. 23.

For the following exercises, use Figure 1 to evaluate each trigonometric function.

Figure 1

24. 25.

For the following exercises, solve for the unknown sides of the given triangle.

26. 27. 28. A 15-ft ladder leans against
a building so that the angle
between the ground and
the ladder is How high
does the ladder reach up
the side of the building?
Find the answer to four
decimal places.

29. The angle of elevation to
the top of a building in
Baltimore is found to be 4
degrees from the ground
at a distance of 1 mile from
the base of the building.
Using this information, find
the height of the building.
Find the answer to four
decimal places.

Unit Circle
30. Find the exact value of 31. Find the exact value of 32. Find the exact value of
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33. State the reference angle
for

34. State the reference angle
for

35. Compute cosine of

36. Compute sine of 37. State the domain of the
sine and cosine functions.

38. State the range of the sine
and cosine functions.

The Other Trigonometric Functions

For the following exercises, find the exact value of the given expression.

39. 40. 41.

42.

For the following exercises, use reference angles to evaluate the given expression.

43. 44. 45. If what is
the

46. If what is the 47. If find 48. If find
There are two

possible solutions.

49. Which trigonometric
functions are even?

50. Which trigonometric
functions are odd?

Practice Test
1. Convert radians to

degrees.
2. Convert to radians. 3. Find the length of a circular

arc with a radius 12
centimeters subtended by
the central angle of

4. Find the area of the sector
with radius of 8 feet and an
angle of radians.

5. Find the angle between
and that is coterminal
with

6. Find the angle between 0
and in radians that is
coterminal with

7. Draw the angle in
standard position on the
Cartesian plane.

8. Draw the angle in
standard position on the
Cartesian plane.

9. A carnival has a Ferris wheel
with a diameter of 80 feet.
The time for the Ferris wheel
to make one revolution is 75
seconds. What is the linear
speed in feet per second of
a point on the Ferris wheel?
What is the angular speed in
radians per second?
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10. Find the missing sides of
the triangle

11. Find the missing sides of
the triangle.

12. The angle of elevation to
the top of a building in
Chicago is found to be 9
degrees from the ground
at a distance of 2000 feet
from the base of the
building. Using this
information, find the
height of the building.

13. Find the exact value of 14. Compute sine of 15. State the domain of the
sine and cosine functions.

16. State the range of the sine
and cosine functions.

17. Find the exact value of 18. Find the exact value of

19. Use reference angles to
evaluate

20. Use reference angles to
evaluate

21. If what is the

22. If find 23. Find the missing angle:
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Dawn colors the sky over the Olare Motorgi Conservancy bordering tha Masai Mara National Reserve in Kenya. (Credit:
Modification of "KenyaLive_Day_#02" by Make it Kenya/flickr)

Chapter Outline
8.1 Graphs of the Sine and Cosine Functions
8.2 Graphs of the Other Trigonometric Functions
8.3 Inverse Trigonometric Functions

Introduction to Periodic Functions
The sun has played a core role in many religions. The ancient Egyptian culture portrayed the sun god, Ra (sometimes
written as Re), as undertaking a two-part daily journey, with one portion in the sky (day) and the other through the
underworld (night). Surya, the Hindu sun god, traces a similar path through the sky on a chariot pulled by seven horses.
While their origins and associated narratives are quite different, both Ra and Surya are primary deities and seen as
creators and preservers of life. In many Native American cultures, the sun is core to spiritual and religious practice, but is
not always a deity. The Sun Dance, practiced differently by many Native American tribes, was a ceremony that generally
paid homage to the sun and, in many cases, tested or expressed the strength of the tribe's people.

As one of the most most prominent natural phenomena and with its close association to giving life, the sun was an
obvious subject for reverence. And its regularity, even in ancient times, made it the primary determinant of time. Each
day, the sun rises in an easterly direction, approaches some maximum height relative to the celestial equator, and sets in
a westerly direction. The celestial equator is an imaginary line that divides the visible universe into two halves in much
the same way Earth’s equator is an imaginary line that divides the planet into two halves. The exact path the sun
appears to follow depends on the exact location on Earth, but each location observes a predictable pattern over time.

The pattern of the sun’s motion throughout the course of a year is a periodic function. Creating a visual representation
of a periodic function in the form of a graph can help us analyze the properties of the function. In this chapter, we will
investigate graphs of sine, cosine, and other trigonometric functions.

8.1 Graphs of the Sine and Cosine Functions
Learning Objectives
In this section, you will:

Graph variations of and .
Use phase shifts of sine and cosine curves.

PERIODIC FUNCTIONS8
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Figure 1 Light can be separated into colors because of its wavelike properties. (credit: "wonderferret"/ Flickr)

White light, such as the light from the sun, is not actually white at all. Instead, it is a composition of all the colors of the
rainbow in the form of waves. The individual colors can be seen only when white light passes through an optical prism
that separates the waves according to their wavelengths to form a rainbow.

Light waves can be represented graphically by the sine function. In the chapter on Trigonometric Functions
(http://openstax.org/books/precalculus-2e/pages/5-introduction-to-trigonometric-functions), we examined
trigonometric functions such as the sine function. In this section, we will interpret and create graphs of sine and cosine
functions.

Graphing Sine and Cosine Functions
Recall that the sine and cosine functions relate real number values to the x- and y-coordinates of a point on the unit
circle. So what do they look like on a graph on a coordinate plane? Let’s start with the sine function. We can create a
table of values and use them to sketch a graph. Table 1 lists some of the values for the sine function on a unit circle.

Table 1

Plotting the points from the table and continuing along the x-axis gives the shape of the sine function. See Figure 2.

Figure 2 The sine function

Notice how the sine values are positive between 0 and which correspond to the values of the sine function in
quadrants I and II on the unit circle, and the sine values are negative between and which correspond to the values
of the sine function in quadrants III and IV on the unit circle. See Figure 3.
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Figure 3 Plotting values of the sine function

Now let’s take a similar look at the cosine function. Again, we can create a table of values and use them to sketch a
graph. Table 2 lists some of the values for the cosine function on a unit circle.

Table 2

As with the sine function, we can plots points to create a graph of the cosine function as in Figure 4.

Figure 4 The cosine function

Because we can evaluate the sine and cosine of any real number, both of these functions are defined for all real
numbers. By thinking of the sine and cosine values as coordinates of points on a unit circle, it becomes clear that the
range of both functions must be the interval

In both graphs, the shape of the graph repeats after which means the functions are periodic with a period of A
periodic function is a function for which a specific horizontal shift, P, results in a function equal to the original function:

for all values of in the domain of When this occurs, we call the smallest such horizontal shift with
the period of the function. Figure 5 shows several periods of the sine and cosine functions.
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Figure 5

Looking again at the sine and cosine functions on a domain centered at the y-axis helps reveal symmetries. As we can
see in Figure 6, the sine function is symmetric about the origin. Recall from The Other Trigonometric Functions that we
determined from the unit circle that the sine function is an odd function because Now we can clearly
see this property from the graph.

Figure 6 Odd symmetry of the sine function

Figure 7 shows that the cosine function is symmetric about the y-axis. Again, we determined that the cosine function is
an even function. Now we can see from the graph that

Figure 7 Even symmetry of the cosine function

Characteristics of Sine and Cosine Functions

The sine and cosine functions have several distinct characteristics:

• They are periodic functions with a period of

• The domain of each function is ∞ ∞ and the range is

• The graph of is symmetric about the origin, because it is an odd function.
• The graph of is symmetric about the -axis, because it is an even function.

762 8 • Periodic Functions

Access for free at openstax.org



Investigating Sinusoidal Functions
As we can see, sine and cosine functions have a regular period and range. If we watch ocean waves or ripples on a pond,
we will see that they resemble the sine or cosine functions. However, they are not necessarily identical. Some are taller
or longer than others. A function that has the same general shape as a sine or cosine function is known as a sinusoidal
function. The general forms of sinusoidal functions are

Determining the Period of Sinusoidal Functions
Looking at the forms of sinusoidal functions, we can see that they are transformations of the sine and cosine functions.
We can use what we know about transformations to determine the period.

In the general formula, is related to the period by If then the period is less than and the function

undergoes a horizontal compression, whereas if then the period is greater than and the function undergoes
a horizontal stretch. For example, so the period is which we knew. If then

so the period is and the graph is compressed. If then so the period is and the graph
is stretched. Notice in Figure 8 how the period is indirectly related to

Figure 8

Period of Sinusoidal Functions

If we let and in the general form equations of the sine and cosine functions, we obtain the forms

The period is

EXAMPLE 1

Identifying the Period of a Sine or Cosine Function
Determine the period of the function

Solution
Let’s begin by comparing the equation to the general form

In the given equation, so the period will be
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TRY IT #1 Determine the period of the function

Determining Amplitude
Returning to the general formula for a sinusoidal function, we have analyzed how the variable relates to the period.
Now let’s turn to the variable so we can analyze how it is related to the amplitude, or greatest distance from rest.
represents the vertical stretch factor, and its absolute value is the amplitude. The local maxima will be a distance
above the horizontal midline of the graph, which is the line because in this case, the midline is the x-axis.
The local minima will be the same distance below the midline. If the function is stretched. For example, the
amplitude of is twice the amplitude of If the function is compressed. Figure 9
compares several sine functions with different amplitudes.

Figure 9

Amplitude of Sinusoidal Functions

If we let and in the general form equations of the sine and cosine functions, we obtain the forms

The amplitude is which is the vertical height from the midline In addition, notice in the example that

EXAMPLE 2

Identifying the Amplitude of a Sine or Cosine Function
What is the amplitude of the sinusoidal function Is the function stretched or compressed vertically?

Solution
Let’s begin by comparing the function to the simplified form

In the given function, so the amplitude is The function is stretched.
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Analysis
The negative value of results in a reflection across the x-axis of the sine function, as shown in Figure 10.

Figure 10

TRY IT #2 What is the amplitude of the sinusoidal function Is the function stretched or
compressed vertically?

Analyzing Graphs of Variations of y = sin x and y = cos x
Now that we understand how and relate to the general form equation for the sine and cosine functions, we will
explore the variables and Recall the general form:

The value for a sinusoidal function is called the phase shift, or the horizontal displacement of the basic sine or cosine
function. If the graph shifts to the right. If the graph shifts to the left. The greater the value of the
more the graph is shifted. Figure 11 shows that the graph of shifts to the right by units, which is
more than we see in the graph of which shifts to the right by units.

Figure 11

While relates to the horizontal shift, indicates the vertical shift from the midline in the general formula for a
sinusoidal function. See Figure 12. The function has its midline at
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Figure 12

Any value of other than zero shifts the graph up or down. Figure 13 compares with
which is shifted 2 units up on a graph.

Figure 13

Variations of Sine and Cosine Functions

Given an equation in the form or is the phase shift and
is the vertical shift.

EXAMPLE 3

Identifying the Phase Shift of a Function
Determine the direction and magnitude of the phase shift for

Solution
Let’s begin by comparing the equation to the general form

In the given equation, notice that and So the phase shift is

or units to the left.

Analysis
We must pay attention to the sign in the equation for the general form of a sinusoidal function. The equation shows a
minus sign before Therefore can be rewritten as If the value of

is negative, the shift is to the left.

TRY IT #3 Determine the direction and magnitude of the phase shift for
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EXAMPLE 4

Identifying the Vertical Shift of a Function
Determine the direction and magnitude of the vertical shift for

Solution
Let’s begin by comparing the equation to the general form

In the given equation, so the shift is 3 units downward.

TRY IT #4 Determine the direction and magnitude of the vertical shift for

HOW TO

Given a sinusoidal function in the form identify the midline, amplitude, period, and
phase shift.

1. Determine the amplitude as
2. Determine the period as

3. Determine the phase shift as
4. Determine the midline as

EXAMPLE 5

Identifying the Variations of a Sinusoidal Function from an Equation
Determine the midline, amplitude, period, and phase shift of the function

Solution
Let’s begin by comparing the equation to the general form

so the amplitude is

Next, so the period is

There is no added constant inside the parentheses, so and the phase shift is

Finally, so the midline is

Analysis
Inspecting the graph, we can determine that the period is the midline is and the amplitude is 3. See Figure 14.

Figure 14

TRY IT #5 Determine the midline, amplitude, period, and phase shift of the function
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EXAMPLE 6

Identifying the Equation for a Sinusoidal Function from a Graph
Determine the formula for the cosine function in Figure 15.

Figure 15

Solution
To determine the equation, we need to identify each value in the general form of a sinusoidal function.

The graph could represent either a sine or a cosine function that is shifted and/or reflected. When the graph has
an extreme point, Since the cosine function has an extreme point for let us write our equation in terms of a
cosine function.

Let’s start with the midline. We can see that the graph rises and falls an equal distance above and below This
value, which is the midline, is in the equation, so

The greatest distance above and below the midline is the amplitude. The maxima are 0.5 units above the midline and the
minima are 0.5 units below the midline. So Another way we could have determined the amplitude is by
recognizing that the difference between the height of local maxima and minima is 1, so Also, the graph is
reflected about the x-axis so that

The graph is not horizontally stretched or compressed, so and the graph is not shifted horizontally, so

Putting this all together,

TRY IT #6 Determine the formula for the sine function in Figure 16.

Figure 16

EXAMPLE 7

Identifying the Equation for a Sinusoidal Function from a Graph
Determine the equation for the sinusoidal function in Figure 17.
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Figure 17

Solution
With the highest value at 1 and the lowest value at the midline will be halfway between at So

The distance from the midline to the highest or lowest value gives an amplitude of

The period of the graph is 6, which can be measured from the peak at to the next peak at or from the
distance between the lowest points. Therefore, Using the positive value for we find that

So far, our equation is either or For the shape and shift, we have more
than one option. We could write this as any one of the following:

• a cosine shifted to the right
• a negative cosine shifted to the left
• a sine shifted to the left
• a negative sine shifted to the right

While any of these would be correct, the cosine shifts are easier to work with than the sine shifts in this case because
they involve integer values. So our function becomes

Again, these functions are equivalent, so both yield the same graph.

TRY IT #7 Write a formula for the function graphed in Figure 18.

Figure 18

Graphing Variations of y = sin x and y = cos x
Throughout this section, we have learned about types of variations of sine and cosine functions and used that
information to write equations from graphs. Now we can use the same information to create graphs from equations.

Instead of focusing on the general form equations
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we will let and and work with a simplified form of the equations in the following examples.

HOW TO

Given the function sketch its graph.

1. Identify the amplitude,
2. Identify the period,

3. Start at the origin, with the function increasing to the right if is positive or decreasing if is negative.
4. At there is a local maximum for or a minimum for with

5. The curve returns to the x-axis at

6. There is a local minimum for (maximum for ) at with

7. The curve returns again to the x-axis at

EXAMPLE 8

Graphing a Function and Identifying the Amplitude and Period
Sketch a graph of

Solution
Let’s begin by comparing the equation to the form

Step 1. We can see from the equation that so the amplitude is 2.

Step 2. The equation shows that so the period is

Step 3. Because is negative, the graph descends as we move to the right of the origin.
Step 4–7. The x-intercepts are at the beginning of one period, the horizontal midpoints are at and at the end
of one period at

The quarter points include the minimum at and the maximum at A local minimum will occur 2 units below
the midline, at and a local maximum will occur at 2 units above the midline, at Figure 19 shows the graph
of the function.

Figure 19

TRY IT #8 Sketch a graph of Determine the midline, amplitude, period, and phase
shift.
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...
HOW TO

Given a sinusoidal function with a phase shift and a vertical shift, sketch its graph.

1. Express the function in the general form
2. Identify the amplitude,
3. Identify the period,

4. Identify the phase shift,
5. Draw the graph of shifted to the right or left by and up or down by

EXAMPLE 9

Graphing a Transformed Sinusoid
Sketch a graph of

Solution
Step 1. The function is already written in general form: This graph will have the shape of a sine
function, starting at the midline and increasing to the right.
Step 2. The amplitude is 3.
Step 3. Since we determine the period as follows.

The period is 8.

Step 4. Since the phase shift is

The phase shift is 1 unit.

Step 5. Figure 20 shows the graph of the function.

Figure 20 A horizontally compressed, vertically stretched, and horizontally shifted sinusoid

TRY IT #9 Draw a graph of Determine the midline, amplitude, period, and phase

shift.
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EXAMPLE 10

Identifying the Properties of a Sinusoidal Function
Given determine the amplitude, period, phase shift, and vertical shift. Then graph the
function.

Solution
Begin by comparing the equation to the general form and use the steps outlined in Example 9.

Step 1. The function is already written in general form.
Step 2. Since the amplitude is
Step 3. so the period is The period is 4.

Step 4. so we calculate the phase shift as The phase shift is

Step 5. so the midline is   and the vertical shift is up 3.

Since is negative, the graph of the cosine function has been reflected about the x-axis.

Figure 21 shows one cycle of the graph of the function.

Figure 21

Using Transformations of Sine and Cosine Functions
We can use the transformations of sine and cosine functions in numerous applications. As mentioned at the beginning
of the chapter, circular motion can be modeled using either the sine or cosine function.

EXAMPLE 11

Finding the Vertical Component of Circular Motion
A point rotates around a circle of radius 3 centered at the origin. Sketch a graph of the y-coordinate of the point as a
function of the angle of rotation.

Solution
Recall that, for a point on a circle of radius r, the y-coordinate of the point is so in this case, we get the
equation The constant 3 causes a vertical stretch of the y-values of the function by a factor of 3, which
we can see in the graph in Figure 22.
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Figure 22

Analysis
Notice that the period of the function is still as we travel around the circle, we return to the point for

Because the outputs of the graph will now oscillate between and the amplitude of the sine wave
is

TRY IT #10 What is the amplitude of the function Sketch a graph of this function.

EXAMPLE 12

Finding the Vertical Component of Circular Motion
A circle with radius 3 ft is mounted with its center 4 ft off the ground. The point closest to the ground is labeled P, as
shown in Figure 23. Sketch a graph of the height above the ground of the point as the circle is rotated; then find a
function that gives the height in terms of the angle of rotation.

Figure 23

Solution
Sketching the height, we note that it will start 1 ft above the ground, then increase up to 7 ft above the ground, and
continue to oscillate 3 ft above and below the center value of 4 ft, as shown in Figure 24.
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Figure 24

Although we could use a transformation of either the sine or cosine function, we start by looking for characteristics that
would make one function easier to use than the other. Let’s use a cosine function because it starts at the highest or
lowest value, while a sine function starts at the middle value. A standard cosine starts at the highest value, and this
graph starts at the lowest value, so we need to incorporate a vertical reflection.

Second, we see that the graph oscillates 3 above and below the center, while a basic cosine has an amplitude of 1, so this
graph has been vertically stretched by 3, as in the last example.

Finally, to move the center of the circle up to a height of 4, the graph has been vertically shifted up by 4. Putting these
transformations together, we find that

TRY IT #11 A weight is attached to a spring that is then hung from a board, as shown in Figure 25. As the
spring oscillates up and down, the position of the weight relative to the board ranges from
in. (at time to in. (at time below the board. Assume the position of is given as a
sinusoidal function of Sketch a graph of the function, and then find a cosine function that gives
the position in terms of

Figure 25
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EXAMPLE 13

Determining a Rider’s Height on a Ferris Wheel
The London Eye is a huge Ferris wheel with a diameter of 135 meters (443 feet). It completes one rotation every 30
minutes. Riders board from a platform 2 meters above the ground. Express a rider’s height above ground as a function
of time in minutes.

Solution
With a diameter of 135 m, the wheel has a radius of 67.5 m. The height will oscillate with amplitude 67.5 m above and
below the center.

Passengers board 2 m above ground level, so the center of the wheel must be located m above ground
level. The midline of the oscillation will be at 69.5 m.

The wheel takes 30 minutes to complete 1 revolution, so the height will oscillate with a period of 30 minutes.

Lastly, because the rider boards at the lowest point, the height will start at the smallest value and increase, following the
shape of a vertically reflected cosine curve.

• Amplitude: so
• Midline: so
• Period: so
• Shape:

An equation for the rider’s height would be

where is in minutes and is measured in meters.

MEDIA

Access these online resources for additional instruction and practice with graphs of sine and cosine functions.

Amplitude and Period of Sine and Cosine (http://openstax.org/l/ampperiod)
Translations of Sine and Cosine (http://openstax.org/l/translasincos)
Graphing Sine and Cosine Transformations (http://openstax.org/l/transformsincos)
Graphing the Sine Function (http://openstax.org/l/graphsinefunc)

8.1 SECTION EXERCISES
Verbal

1. Why are the sine and cosine
functions called periodic
functions?

2. How does the graph of
compare with the

graph of Explain
how you could horizontally
translate the graph of

to obtain

3. For the equation
what

constants affect the range
of the function and how do
they affect the range?

4. How does the range of a
translated sine function
relate to the equation

5. How can the unit circle be
used to construct the graph
of
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Graphical

For the following exercises, graph two full periods of each function and state the amplitude, period, and midline. State
the maximum and minimum y-values and their corresponding x-values on one period for Round answers to two
decimal places if necessary.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.

For the following exercises, graph one full period of each function, starting at For each function, state the
amplitude, period, and midline. State the maximum and minimum y-values and their corresponding x-values on one
period for State the phase shift and vertical translation, if applicable. Round answers to two decimal places if
necessary.

18. 19. 20.

21. 22. 23. Determine the amplitude, midline,
period, and an equation involving
the sine function for the graph
shown in Figure 26.

Figure 26

776 8 • Periodic Functions

Access for free at openstax.org



24. Determine the amplitude, period,
midline, and an equation involving
cosine for the graph shown in
Figure 27.

Figure 27

25. Determine the amplitude, period,
midline, and an equation involving
cosine for the graph shown in
Figure 28.

Figure 28

26. Determine the amplitude, period,
midline, and an equation involving
sine for the graph shown in Figure
29.

Figure 29

27. Determine the amplitude, period,
midline, and an equation involving
cosine for the graph shown in
Figure 30.

Figure 30

28. Determine the amplitude, period,
midline, and an equation involving
sine for the graph shown in Figure
31.

Figure 31

29. Determine the amplitude, period,
midline, and an equation involving
cosine for the graph shown in
Figure 32.

Figure 32

30. Determine the amplitude, period,
midline, and an equation involving
sine for the graph shown in Figure
33.

Figure 33
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Algebraic

For the following exercises, let

31. On solve 32. On solve 33. Evaluate

34. On
Find all values of

35. On the maximum
value(s) of the function
occur(s) at what x-value(s)?

36. On the minimum
value(s) of the function
occur(s) at what x-value(s)?

37. Show that
This means that

is an odd
function and possesses
symmetry with respect to
________________.

For the following exercises, let

38. On solve the
equation

39. On solve 40. On find the
x-intercepts of

41. On find the
x-values at which the
function has a maximum or
minimum value.

42. On solve the

equation

Technology

43. Graph on
Explain why the

graph appears as it does.

44. Graph on
Did the graph

appear as predicted in the
previous exercise?

45. Graph on
and verbalize how

the graph varies from the
graph of

46. Graph on
the window and
explain what the graph
shows.

47. Graph on the
window and
explain what the graph
shows.
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Real-World Applications

ⓐ Find the amplitude,
midline, and period of

ⓑ Find a formula for the
height function

ⓒ How high off the
ground is a person after 5
minutes?

48. A Ferris wheel is 25 meters
in diameter and boarded
from a platform that is 1
meter above the ground.
The six o’clock position on
the Ferris wheel is level
with the loading platform.
The wheel completes 1 full
revolution in 10 minutes.
The function gives a
person’s height in meters
above the ground t
minutes after the wheel
begins to turn.

8.2 Graphs of the Other Trigonometric Functions
Learning Objectives
In this section, you will:

Analyze the graph of y=tan x.
Graph variations of y=tan x.
Analyze the graphs of y=sec x and y=csc x.
Graph variations of y=sec x and y=csc x.
Analyze the graph of y=cot x.
Graph variations of y=cot x.

We know the tangent function can be used to find distances, such as the height of a building, mountain, or flagpole. But
what if we want to measure repeated occurrences of distance? Imagine, for example, a fire truck parked next to a
warehouse. The rotating light from the truck would travel across the wall of the warehouse in regular intervals. If the
input is time, the output would be the distance the beam of light travels. The beam of light would repeat the distance at
regular intervals. The tangent function can be used to approximate this distance. Asymptotes would be needed to
illustrate the repeated cycles when the beam runs parallel to the wall because, seemingly, the beam of light could
appear to extend forever. The graph of the tangent function would clearly illustrate the repeated intervals. In this
section, we will explore the graphs of the tangent and other trigonometric functions.

Analyzing the Graph of y = tan x
We will begin with the graph of the tangent function, plotting points as we did for the sine and cosine functions. Recall
that

The period of the tangent function is because the graph repeats itself on intervals of where is a constant. If we
graph the tangent function on to we can see the behavior of the graph on one complete cycle. If we look at any
larger interval, we will see that the characteristics of the graph repeat.

We can determine whether tangent is an odd or even function by using the definition of tangent.
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Therefore, tangent is an odd function. We can further analyze the graphical behavior of the tangent function by looking
at values for some of the special angles, as listed in Table 1.

0

undefined –1 0 1 undefined

Table 1

These points will help us draw our graph, but we need to determine how the graph behaves where it is undefined. If we
look more closely at values when we can use a table to look for a trend. Because and
we will evaluate at radian measures as shown in Table 2.

1.3 1.5 1.55 1.56

3.6 14.1 48.1 92.6

Table 2

As approaches the outputs of the function get larger and larger. Because is an odd function, we see the
corresponding table of negative values in Table 3.

−1.3 −1.5 −1.55 −1.56

−3.6 −14.1 −48.1 −92.6

Table 3

We can see that, as approaches the outputs get smaller and smaller. Remember that there are some values of
for which For example, and At these values, the tangent function is undefined, so
the graph of has discontinuities at At these values, the graph of the tangent has vertical
asymptotes. Figure 1 represents the graph of The tangent is positive from 0 to and from to
corresponding to quadrants I and III of the unit circle.

Figure 1 Graph of the tangent function
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Graphing Variations of y = tan x
As with the sine and cosine functions, the tangent function can be described by a general equation.

We can identify horizontal and vertical stretches and compressions using values of and The horizontal stretch can
typically be determined from the period of the graph. With tangent graphs, it is often necessary to determine a vertical
stretch using a point on the graph.

Because there are no maximum or minimum values of a tangent function, the term amplitude cannot be interpreted as
it is for the sine and cosine functions. Instead, we will use the phrase stretching/compressing factor when referring to
the constant

Features of the Graph of y = Atan(Bx)

• The stretching factor is
• The period is

• The domain is all real numbers where such that is an integer.

• The range is ∞
• The asymptotes occur at where is an integer.

• is an odd function.

Graphing One Period of a Stretched or Compressed Tangent Function
We can use what we know about the properties of the tangent function to quickly sketch a graph of any stretched and/or
compressed tangent function of the form We focus on a single period of the function including the
origin, because the periodic property enables us to extend the graph to the rest of the function’s domain if we wish. Our
limited domain is then the interval and the graph has vertical asymptotes at where On
the graph will come up from the left asymptote at cross through the origin, and continue to increase as it
approaches the right asymptote at To make the function approach the asymptotes at the correct rate, we also
need to set the vertical scale by actually evaluating the function for at least one point that the graph will pass through.
For example, we can use

because

HOW TO

Given the function graph one period.

1. Identify the stretching factor,
2. Identify and determine the period,

3. Draw vertical asymptotes at and
4. For the graph approaches the left asymptote at negative output values and the right asymptote at

positive output values (reverse for ).
5. Plot reference points at and and draw the graph through these points.

EXAMPLE 1

Sketching a Compressed Tangent
Sketch a graph of one period of the function
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Solution
First, we identify and

Because and we can find the stretching/compressing factor and period. The period is so the

asymptotes are at At a quarter period from the origin, we have

This means the curve must pass through the points and The only inflection point is at the
origin. Figure 2 shows the graph of one period of the function.

Figure 2

TRY IT #1 Sketch a graph of

Graphing One Period of a Shifted Tangent Function
Now that we can graph a tangent function that is stretched or compressed, we will add a vertical and/or horizontal (or
phase) shift. In this case, we add and to the general form of the tangent function.

The graph of a transformed tangent function is different from the basic tangent function in several ways:

Features of the Graph of y = Atan(Bx−C)+D

• The stretching factor is
• The period is

• The domain is where is an integer.

• The range is ∞
• The vertical asymptotes occur at where is an odd integer.

• There is no amplitude.
• is an odd function because it is the quotient of odd and even functions (sine and cosine

respectively).

782 8 • Periodic Functions

Access for free at openstax.org



...

...

HOW TO

Given the function sketch the graph of one period.

1. Express the function given in the form
2. Identify the stretching/compressing factor,
3. Identify and determine the period,

4. Identify and determine the phase shift,
5. Draw the graph of shifted to the right by and up by
6. Sketch the vertical asymptotes, which occur at where is an odd integer.

7. Plot any three reference points and draw the graph through these points.

EXAMPLE 2

Graphing One Period of a Shifted Tangent Function
Graph one period of the function

Solution
Step 1. The function is already written in the form
Step 2. so the stretching factor is
Step 3. so the period is

Step 4. so the phase shift is
Step 5-7. The asymptotes are at and and the three recommended reference points are

and The graph is shown in Figure 3.

Figure 3

Analysis
Note that this is a decreasing function because

TRY IT #2 How would the graph in Example 2 look different if we made instead of

HOW TO

Given the graph of a tangent function, identify horizontal and vertical stretches.

1. Find the period from the spacing between successive vertical asymptotes or x-intercepts.
2. Write
3. Determine a convenient point on the given graph and use it to determine
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EXAMPLE 3

Identifying the Graph of a Stretched Tangent
Find a formula for the function graphed in Figure 4.

Figure 4 A stretched tangent function

Solution
The graph has the shape of a tangent function.

Step 1. One cycle extends from –4 to 4, so the period is Since we have

Step 2. The equation must have the form
Step 3. To find the vertical stretch we can use the point

Because

This function would have a formula

TRY IT #3 Find a formula for the function in Figure 5.

Figure 5

Analyzing the Graphs of y = sec x and y = cscx
The secant was defined by the reciprocal identity Notice that the function is undefined when the cosine is
0, leading to vertical asymptotes at etc. Because the cosine is never more than 1 in absolute value, the secant,
being the reciprocal, will never be less than 1 in absolute value.

We can graph by observing the graph of the cosine function because these two functions are reciprocals of
one another. See Figure 6. The graph of the cosine is shown as a dashed orange wave so we can see the relationship.
Where the graph of the cosine function decreases, the graph of the secant function increases. Where the graph of the
cosine function increases, the graph of the secant function decreases. When the cosine function is zero, the secant is
undefined.
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The secant graph has vertical asymptotes at each value of where the cosine graph crosses the x-axis; we show these in
the graph below with dashed vertical lines, but will not show all the asymptotes explicitly on all later graphs involving the
secant and cosecant.

Note that, because cosine is an even function, secant is also an even function. That is,

Figure 6 Graph of the secant function,

As we did for the tangent function, we will again refer to the constant as the stretching factor, not the amplitude.

Features of the Graph of y = Asec(Bx)

• The stretching factor is
• The period is

• The domain is where is an odd integer.

• The range is ∞ ∞
• The vertical asymptotes occur at where is an odd integer.

• There is no amplitude.
• is an even function because cosine is an even function.

Similar to the secant, the cosecant is defined by the reciprocal identity Notice that the function is
undefined when the sine is 0, leading to a vertical asymptote in the graph at etc. Since the sine is never more than 1
in absolute value, the cosecant, being the reciprocal, will never be less than 1 in absolute value.

We can graph by observing the graph of the sine function because these two functions are reciprocals of one
another. See Figure 7. The graph of sine is shown as a dashed orange wave so we can see the relationship. Where the
graph of the sine function decreases, the graph of the cosecant function increases. Where the graph of the sine function
increases, the graph of the cosecant function decreases.

The cosecant graph has vertical asymptotes at each value of where the sine graph crosses the x-axis; we show these in
the graph below with dashed vertical lines.

Note that, since sine is an odd function, the cosecant function is also an odd function. That is,

The graph of cosecant, which is shown in Figure 7, is similar to the graph of secant.
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Figure 7 The graph of the cosecant function,

Features of the Graph of y = Acsc(Bx)

• The stretching factor is
• The period is

• The domain is where is an integer.

• The range is ∞ ∞
• The asymptotes occur at where is an integer.

• is an odd function because sine is an odd function.

Graphing Variations of y = sec x and y= csc x
For shifted, compressed, and/or stretched versions of the secant and cosecant functions, we can follow similar methods
to those we used for tangent and cotangent. That is, we locate the vertical asymptotes and also evaluate the functions
for a few points (specifically the local extrema). If we want to graph only a single period, we can choose the interval for
the period in more than one way. The procedure for secant is very similar, because the cofunction identity means that
the secant graph is the same as the cosecant graph shifted half a period to the left. Vertical and phase shifts may be
applied to the cosecant function in the same way as for the secant and other functions.The equations become the
following.

Features of the Graph of y = Asec(Bx−C)+D

• The stretching factor is
• The period is

• The domain is where is an odd integer.

• The range is ∞ ∞
• The vertical asymptotes occur at where is an odd integer.

• There is no amplitude.
• is an even function because cosine is an even function.
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Features of the Graph of y = Acsc(Bx−C)+D

• The stretching factor is
• The period is

• The domain is where is an integer.

• The range is ∞ ∞
• The vertical asymptotes occur at where is an integer.

• There is no amplitude.
• is an odd function because sine is an odd function.

HOW TO

Given a function of the form graph one period.

1. Express the function given in the form
2. Identify the stretching/compressing factor,
3. Identify and determine the period,

4. Sketch the graph of
5. Use the reciprocal relationship between and to draw the graph of
6. Sketch the asymptotes.
7. Plot any two reference points and draw the graph through these points.

EXAMPLE 4

Graphing a Variation of the Secant Function
Graph one period of

Solution
Step 1. The given function is already written in the general form,
Step 2. so the stretching factor is
Step 3. so The period is units.
Step 4. Sketch the graph of the function
Step 5. Use the reciprocal relationship of the cosine and secant functions to draw the cosecant function.
Steps 6–7. Sketch two asymptotes at and We can use two reference points, the local minimum at

and the local maximum at Figure 8 shows the graph.

Figure 8

TRY IT #4 Graph one period of
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Q&A Do the vertical shift and stretch/compression affect the secant’s range?

Yes. The range of is ∞ ∞

HOW TO

Given a function of the form graph one period.

1. Express the function given in the form
2. Identify the stretching/compressing factor,
3. Identify and determine the period,

4. Identify and determine the phase shift,
5. Draw the graph of , but shift it to the right by and up by
6. Sketch the vertical asymptotes, which occur at where is an odd integer.

EXAMPLE 5

Graphing a Variation of the Secant Function
Graph one period of

Solution
Step 1. Express the function given in the form
Step 2. The stretching/compressing factor is
Step 3. The period is

Step 4. The phase shift is

Step 5. Draw the graph of but shift it to the right by and up by
Step 6. Sketch the vertical asymptotes, which occur at and There is a local minimum at and a
local maximum at Figure 9 shows the graph.

Figure 9
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TRY IT #5 Graph one period of

Q&A The domain of was given to be all such that for any integer Would the domain of

Yes. The excluded points of the domain follow the vertical asymptotes. Their locations show the horizontal
shift and compression or expansion implied by the transformation to the original function’s input.

HOW TO

Given a function of the form graph one period.

1. Express the function given in the form
2.
3. Identify and determine the period,

4. Draw the graph of
5. Use the reciprocal relationship between and to draw the graph of
6. Sketch the asymptotes.
7. Plot any two reference points and draw the graph through these points.

EXAMPLE 6

Graphing a Variation of the Cosecant Function
Graph one period of

Solution
Step 1. The given function is already written in the general form,
Step 2. so the stretching factor is 3.
Step 3. so The period is units.
Step 4. Sketch the graph of the function
Step 5. Use the reciprocal relationship of the sine and cosecant functions to draw the cosecant function.
Steps 6–7. Sketch three asymptotes at and We can use two reference points, the local maximum at

and the local minimum at Figure 10 shows the graph.
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Figure 10

TRY IT #6 Graph one period of

HOW TO

Given a function of the form graph one period.

1. Express the function given in the form
2. Identify the stretching/compressing factor,
3. Identify and determine the period,

4. Identify and determine the phase shift,
5. Draw the graph of but shift it to the right by and up by
6. Sketch the vertical asymptotes, which occur at where is an integer.

EXAMPLE 7

Graphing a Vertically Stretched, Horizontally Compressed, and Vertically Shifted Cosecant
Sketch a graph of What are the domain and range of this function?

Solution
Step 1. Express the function given in the form
Step 2. Identify the stretching/compressing factor,
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Step 3. The period is

Step 4. The phase shift is

Step 5. Draw the graph of but shift it up
Step 6. Sketch the vertical asymptotes, which occur at

The graph for this function is shown in Figure 11.

Figure 11 A transformed cosecant function

Analysis
The vertical asymptotes shown on the graph mark off one period of the function, and the local extrema in this interval
are shown by dots. Notice how the graph of the transformed cosecant relates to the graph of
shown as the orange dashed wave.

TRY IT #7 Given the graph of shown in Figure 12, sketch the graph of
on the same axes.

Figure 12

Analyzing the Graph of y = cot x
The last trigonometric function we need to explore is cotangent. The cotangent is defined by the reciprocal identity

Notice that the function is undefined when the tangent function is 0, leading to a vertical asymptote in
the graph at etc. Since the output of the tangent function is all real numbers, the output of the cotangent function is
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also all real numbers.

We can graph by observing the graph of the tangent function because these two functions are reciprocals of
one another. See Figure 13. Where the graph of the tangent function decreases, the graph of the cotangent function
increases. Where the graph of the tangent function increases, the graph of the cotangent function decreases.

The cotangent graph has vertical asymptotes at each value of where we show these in the graph below with
dashed lines. Since the cotangent is the reciprocal of the tangent, has vertical asymptotes at all values of where

and at all values of where has its vertical asymptotes.

Figure 13 The cotangent function

Features of the Graph of y = Acot(Bx)

• The stretching factor is
• The period is

• The domain is where is an integer.

• The range is ∞ ∞
• The asymptotes occur at where is an integer.

• is an odd function.

Graphing Variations of y = cot x
We can transform the graph of the cotangent in much the same way as we did for the tangent. The equation becomes
the following.

Features of the Graph of y = Acot(Bx−C)+D

• The stretching factor is
• The period is

• The domain is where is an integer.

• The range is ∞
• The vertical asymptotes occur at where is an integer.

• There is no amplitude.
• is an odd function because it is the quotient of even and odd functions (cosine and sine,

respectively)

HOW TO

Given a modified cotangent function of the form graph one period.

792 8 • Periodic Functions

Access for free at openstax.org



...

1. Express the function in the form
2. Identify the stretching factor,
3. Identify the period,

4. Draw the graph of
5. Plot any two reference points.
6. Use the reciprocal relationship between tangent and cotangent to draw the graph of
7. Sketch the asymptotes.

EXAMPLE 8

Graphing Variations of the Cotangent Function
Determine the stretching factor, period, and phase shift of and then sketch a graph.

Solution
Step 1. Expressing the function in the form gives
Step 2. The stretching factor is
Step 3. The period is
Step 4. Sketch the graph of
Step 5. Plot two reference points. Two such points are and
Step 6. Use the reciprocal relationship to draw
Step 7. Sketch the asymptotes,

The blue graph in Figure 14 shows and the green graph shows

Figure 14

HOW TO

Given a modified cotangent function of the form graph one period.

1. Express the function in the form
2. Identify the stretching factor,
3. Identify the period,

4. Identify the phase shift,
5. Draw the graph of shifted to the right by and up by
6. Sketch the asymptotes where is an integer.

7. Plot any three reference points and draw the graph through these points.
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EXAMPLE 9

Graphing a Modified Cotangent
Sketch a graph of one period of the function

Solution
Step 1. The function is already written in the general form
Step 2. so the stretching factor is 4.
Step 3. so the period is

Step 4. so the phase shift is

Step 5. We draw
Step 6-7. Three points we can use to guide the graph are and We use the reciprocal relationship
of tangent and cotangent to draw
Step 8. The vertical asymptotes are and

The graph is shown in Figure 15.

Figure 15 One period of a modified cotangent function

Using the Graphs of Trigonometric Functions to Solve Real-World Problems
Many real-world scenarios represent periodic functions and may be modeled by trigonometric functions. As an example,
let’s return to the scenario from the section opener. Have you ever observed the beam formed by the rotating light on a
fire truck and wondered about the movement of the light beam itself across the wall? The periodic behavior of the
distance the light shines as a function of time is obvious, but how do we determine the distance? We can use the tangent
function.

EXAMPLE 10

Using Trigonometric Functions to Solve Real-World Scenarios
Suppose the function marks the distance in the movement of a light beam from the top of a police car
across a wall where is the time in seconds and is the distance in feet from a point on the wall directly across from the
police car.

ⓐ Find and interpret the stretching factor and period. ⓑ Graph on the interval

ⓒ Evaluate and discuss the function’s value at that input.
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Solution

ⓐ We know from the general form of that is the stretching factor and is the period.

Figure 16

We see that the stretching factor is 5. This means that the beam of light will have moved 5 ft after half the period.

The period is This means that every 4 seconds, the beam of light sweeps the wall. The distance from

the spot across from the police car grows larger as the police car approaches.

ⓑ To graph the function, we draw an asymptote at and use the stretching factor and period. See Figure 17

Figure 17

ⓒ period: after 1 second, the beam of has moved 5 ft from the spot across from
the police car.

MEDIA

Access these online resources for additional instruction and practice with graphs of other trigonometric functions.

Graphing the Tangent (http://openstax.org/l/graphtangent)
Graphing Cosecant and Secant (http://openstax.org/l/graphcscsec)
Graphing the Cotangent (http://openstax.org/l/graphcot)

8.2 SECTION EXERCISES
Verbal

1. Explain how the graph of
the sine function can be
used to graph

2. How can the graph of
be used to

construct the graph of

3. Explain why the period of
is equal to

4. Why are there no intercepts
on the graph of

5. How does the period of
compare with the

period of
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Algebraic

For the following exercises, match each trigonometric function with one of the following graphs.

Figure 18

6. 7. 8.

9.

For the following exercises, find the period and horizontal shift of each of the functions.

10. 11. 12.

13. If find 14. If find 15. If find

16. If find

For the following exercises, rewrite each expression such that the argument is positive.

17. 18.

Graphical

For the following exercises, sketch two periods of the graph for each of the following functions. Identify the stretching
factor, period, and asymptotes.

19. 20. 21.

22. 23. 24.

25. 26. 27.

28. 29. 30.

796 8 • Periodic Functions

Access for free at openstax.org



31. 32. 33.

34. 35. 36.

For the following exercises, find and graph two periods of the periodic function with the given stretching factor,
period, and phase shift.

37. A tangent curve, period of and phase
shift

38. A tangent curve, period of and phase
shift

For the following exercises, find an equation for the graph of each function.

39. 40.

41. 42.
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43. 44.

45.

Technology

For the following exercises, use a graphing calculator to graph two periods of the given function. Note: most graphing
calculators do not have a cosecant button; therefore, you will need to input as

46. 47. 48.

49. 50. Graph

What is the function shown in
the graph?

51.

52. 53.
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Real-World Applications

ⓐ Graph on the interval

ⓑ Find and interpret the stretching factor,
period, and asymptote.

ⓒ Evaluate and and discuss the
function’s values at those inputs.

54. The function marks the
distance in the movement of a light beam from a
police car across a wall for time in seconds, and
distance in feet.

ⓐ What is a reasonable domain for

ⓑ Graph on this domain.

ⓒ Find and discuss the meaning of any vertical
asymptotes on the graph of

ⓓ Calculate and interpret Round to the
second decimal place.

ⓔ Calculate and interpret Round to the second
decimal place.

ⓕ What is the minimum distance between the
fisherman and the boat? When does this occur?

55. Standing on the shore of a lake, a fisherman sights a
boat far in the distance to his left. Let measured in
radians, be the angle formed by the line of sight to the
ship and a line due north from his position. Assume due
north is 0 and is measured negative to the left and
positive to the right. (See Figure 19.) The boat travels
from due west to due east and, ignoring the curvature
of the Earth, the distance in kilometers, from the
fisherman to the boat is given by the function

Figure 19

ⓐ Graph on the interval

ⓑ Evaluate and interpret the information.

ⓒ What is the minimum distance between the
comet and Earth? When does this occur? To which
constant in the equation does this correspond?

ⓓ Find and discuss the meaning of any vertical
asymptotes.

56. A laser rangefinder is locked on a comet
approaching Earth. The distance in
kilometers, of the comet after days, for in the
interval 0 to 30 days, is given by
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ⓐ Write a function expressing the altitude
in miles, of the rocket above the ground after
seconds. Ignore the curvature of the Earth.

ⓑ Graph on the interval

ⓒ Evaluate and interpret the values and

ⓓ What happens to the values of as
approaches 60 seconds? Interpret the meaning of
this in terms of the problem.

57. A video camera is focused on a rocket on a
launching pad 2 miles from the camera. The angle
of elevation from the ground to the rocket after
seconds is

8.3 Inverse Trigonometric Functions
Learning Objectives
In this section, you will:

Understand and use the inverse sine, cosine, and tangent functions.
Find the exact value of expressions involving the inverse sine, cosine, and tangent functions.
Use a calculator to evaluate inverse trigonometric functions.
Find exact values of composite functions with inverse trigonometric functions.

For any right triangle, given one other angle and the length of one side, we can figure out what the other angles and
sides are. But what if we are given only two sides of a right triangle? We need a procedure that leads us from a ratio of
sides to an angle. This is where the notion of an inverse to a trigonometric function comes into play. In this section, we
will explore the inverse trigonometric functions.

Understanding and Using the Inverse Sine, Cosine, and Tangent Functions
In order to use inverse trigonometric functions, we need to understand that an inverse trigonometric function “undoes”
what the original trigonometric function “does,” as is the case with any other function and its inverse. In other words,
the domain of the inverse function is the range of the original function, and vice versa, as summarized in Figure 1.

Figure 1

For example, if then we would write Be aware that does not mean The
following examples illustrate the inverse trigonometric functions:

• Since then

• Since then
• Since then

In previous sections, we evaluated the trigonometric functions at various angles, but at times we need to know what
angle would yield a specific sine, cosine, or tangent value. For this, we need inverse functions. Recall that, for a one-to-
one function, if then an inverse function would satisfy

Bear in mind that the sine, cosine, and tangent functions are not one-to-one functions. The graph of each function would
fail the horizontal line test. In fact, no periodic function can be one-to-one because each output in its range corresponds
to at least one input in every period, and there are an infinite number of periods. As with other functions that are not
one-to-one, we will need to restrict the domain of each function to yield a new function that is one-to-one. We choose a
domain for each function that includes the number 0. Figure 2 shows the graph of the sine function limited to
and the graph of the cosine function limited to
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Figure 2 (a) Sine function on a restricted domain of (b) Cosine function on a restricted domain of

Figure 3 shows the graph of the tangent function limited to

Figure 3 Tangent function on a restricted domain of

These conventional choices for the restricted domain are somewhat arbitrary, but they have important, helpful
characteristics. Each domain includes the origin and some positive values, and most importantly, each results in a one-
to-one function that is invertible. The conventional choice for the restricted domain of the tangent function also has the
useful property that it extends from one vertical asymptote to the next instead of being divided into two parts by an
asymptote.

On these restricted domains, we can define the inverse trigonometric functions.

• The inverse sine function means The inverse sine function is sometimes called the arcsine
function, and notated

• The inverse cosine function means The inverse cosine function is sometimes called the
arccosine function, and notated

• The inverse tangent function means The inverse tangent function is sometimes called the
arctangent function, and notated

∞

The graphs of the inverse functions are shown in Figure 4, Figure 5, and Figure 6. Notice that the output of each of these
inverse functions is a number, an angle in radian measure. We see that has domain and range

has domain and range and has domain of all real numbers and range To find the
domain and range of inverse trigonometric functions, switch the domain and range of the original functions. Each graph
of the inverse trigonometric function is a reflection of the graph of the original function about the line
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Figure 4 The sine function and inverse sine (or arcsine) function

Figure 5 The cosine function and inverse cosine (or arccosine) function

Figure 6 The tangent function and inverse tangent (or arctangent) function
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Relations for Inverse Sine, Cosine, and Tangent Functions

For angles in the interval if then

For angles in the interval if then

For angles in the interval if then

EXAMPLE 1

Writing a Relation for an Inverse Function
Given write a relation involving the inverse sine.

Solution
Use the relation for the inverse sine. If then .

In this problem, and

TRY IT #1 Given write a relation involving the inverse cosine.

Finding the Exact Value of Expressions Involving the Inverse Sine, Cosine, and
Tangent Functions
Now that we can identify inverse functions, we will learn to evaluate them. For most values in their domains, we must
evaluate the inverse trigonometric functions by using a calculator, interpolating from a table, or using some other
numerical technique. Just as we did with the original trigonometric functions, we can give exact values for the inverse
functions when we are using the special angles, specifically (30°), (45°), and (60°), and their reflections into other
quadrants.

HOW TO

Given a “special” input value, evaluate an inverse trigonometric function.

1. Find angle for which the original trigonometric function has an output equal to the given input for the inverse
trigonometric function.

2. If is not in the defined range of the inverse, find another angle that is in the defined range and has the same
sine, cosine, or tangent as depending on which corresponds to the given inverse function.

EXAMPLE 2

Evaluating Inverse Trigonometric Functions for Special Input Values
Evaluate each of the following.

ⓐ ⓑ ⓒ ⓓ
Solution

ⓐ Evaluating is the same as determining the angle that would have a sine value of In other words,
what angle would satisfy There are multiple values that would satisfy this relationship, such as and

but we know we need the angle in the interval so the answer will be Remember that
the inverse is a function, so for each input, we will get exactly one output.
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ⓑ To evaluate we know that and both have a sine value of but neither is in the

interval For that, we need the negative angle coterminal with

ⓒ To evaluate we are looking for an angle in the interval with a cosine value of The

angle that satisfies this is

ⓓ Evaluating we are looking for an angle in the interval with a tangent value of 1. The correct
angle is

TRY IT #2 Evaluate each of the following.

ⓐ ⓑ ⓒ ⓓ

Using a Calculator to Evaluate Inverse Trigonometric Functions
To evaluate inverse trigonometric functions that do not involve the special angles discussed previously, we will need to
use a calculator or other type of technology. Most scientific calculators and calculator-emulating applications have
specific keys or buttons for the inverse sine, cosine, and tangent functions. These may be labeled, for example, SIN ,
ARCSIN, or ASIN.

In the previous chapter, we worked with trigonometry on a right triangle to solve for the sides of a triangle given one
side and an additional angle. Using the inverse trigonometric functions, we can solve for the angles of a right triangle
given two sides, and we can use a calculator to find the values to several decimal places.

In these examples and exercises, the answers will be interpreted as angles and we will use as the independent
variable. The value displayed on the calculator may be in degrees or radians, so be sure to set the mode appropriate to
the application.

EXAMPLE 3

Evaluating the Inverse Sine on a Calculator
Evaluate using a calculator.

Solution
Because the output of the inverse function is an angle, the calculator will give us a degree value if in degree mode and a
radian value if in radian mode. Calculators also use the same domain restrictions on the angles as we are using.

In radian mode, In degree mode, Note that in calculus and beyond we will
use radians in almost all cases.

TRY IT #3 Evaluate using a calculator.

HOW TO

Given two sides of a right triangle like the one shown in Figure 7, find an angle.
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Figure 7

1. If one given side is the hypotenuse of length and the side of length adjacent to the desired angle is given, use
the equation

2. If one given side is the hypotenuse of length and the side of length opposite to the desired angle is given, use
the equation

3. If the two legs (the sides adjacent to the right angle) are given, then use the equation

EXAMPLE 4

Applying the Inverse Cosine to a Right Triangle
Solve the triangle in Figure 8 for the angle

Figure 8

Solution
Because we know the hypotenuse and the side adjacent to the angle, it makes sense for us to use the cosine function.

TRY IT #4 Solve the triangle in Figure 9 for the angle

Figure 9

Finding Exact Values of Composite Functions with Inverse Trigonometric
Functions
There are times when we need to compose a trigonometric function with an inverse trigonometric function. In these
cases, we can usually find exact values for the resulting expressions without resorting to a calculator. Even when the
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input to the composite function is a variable or an expression, we can often find an expression for the output. To help
sort out different cases, let and be two different trigonometric functions belonging to the set

and let and be their inverses.

Evaluating Compositions of the Form f(f−1(y)) and f−1(f(x))
For any trigonometric function, for all in the proper domain for the given function. This follows from
the definition of the inverse and from the fact that the range of was defined to be identical to the domain of
However, we have to be a little more careful with expressions of the form

Compositions of a trigonometric function and its inverse

∞ ∞

Q&A Is it correct that

No. This equation is correct if belongs to the restricted domain but sine is defined for all real
input values, and for outside the restricted interval, the equation is not correct because its inverse
always returns a value in The situation is similar for cosine and tangent and their inverses. For
example,

HOW TO

Given an expression of the form f−1(f(θ)) where evaluate.

1. If is in the restricted domain of
2. If not, then find an angle within the restricted domain of such that Then

EXAMPLE 5

Using Inverse Trigonometric Functions
Evaluate the following:

ⓐ ⓑ ⓒ ⓓ
Solution

ⓐ so

ⓑ but so

ⓒ so

ⓓ but because cosine is an even function. so

TRY IT #5 Evaluate
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Evaluating Compositions of the Form f−1(g(x))
Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a composition of a
trigonometric function and the inverse of another trigonometric function. We will begin with compositions of the form

For special values of we can exactly evaluate the inner function and then the outer, inverse function.
However, we can find a more general approach by considering the relation between the two acute angles of a right
triangle where one is making the other Consider the sine and cosine of each angle of the right triangle in
Figure 10.

Figure 10 Right triangle illustrating the cofunction relationships

Because we have if If is not in this domain, then we need
to find another angle that has the same cosine as and does belong to the restricted domain; we then subtract this
angle from Similarly, so if These are just the function-
cofunction relationships presented in another way.

HOW TO

Given functions of the form and evaluate them.

1. If then
2. If then find another angle such that

3. If then
4. If then find another angle such that

EXAMPLE 6

Evaluating the Composition of an Inverse Sine with a Cosine
Evaluate

ⓐ by direct evaluation. ⓑ by the method described previously.
Solution

ⓐ Here, we can directly evaluate the inside of the composition.

Now, we can evaluate the inverse function as we did earlier. ⓑ We have and
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TRY IT #6 Evaluate

Evaluating Compositions of the Form f(g−1(x))
To evaluate compositions of the form where and are any two of the functions sine, cosine, or tangent

and is any input in the domain of we have exact formulas, such as When we need to use
them, we can derive these formulas by using the trigonometric relations between the angles and sides of a right
triangle, together with the use of Pythagoras’s relation between the lengths of the sides. We can use the Pythagorean
identity, to solve for one when given the other. We can also use the inverse trigonometric functions
to find compositions involving algebraic expressions.

EXAMPLE 7

Evaluating the Composition of a Sine with an Inverse Cosine
Find an exact value for

Solution
Beginning with the inside, we can say there is some angle such that which means and we
are looking for We can use the Pythagorean identity to do this.

Since is in quadrant I, must be positive, so the solution is See Figure 11.

Figure 11 Right triangle illustrating that if then

We know that the inverse cosine always gives an angle on the interval so we know that the sine of that angle must
be positive; therefore

TRY IT #7 Evaluate

EXAMPLE 8

Evaluating the Composition of a Sine with an Inverse Tangent
Find an exact value for

Solution
While we could use a similar technique as in Example 6, we will demonstrate a different technique here. From the inside,
we know there is an angle such that We can envision this as the opposite and adjacent sides on a right
triangle, as shown in Figure 12.
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Figure 12 A right triangle with two sides known

Using the Pythagorean Theorem, we can find the hypotenuse of this triangle.

Now, we can evaluate the sine of the angle as the opposite side divided by the hypotenuse.

This gives us our desired composition.

TRY IT #8 Evaluate

EXAMPLE 9

Finding the Cosine of the Inverse Sine of an Algebraic Expression
Find a simplified expression for for

Solution
We know there is an angle such that

Because we know that the inverse sine must give an angle on the interval we can deduce that the cosine of
that angle must be positive.

TRY IT #9 Find a simplified expression for for

MEDIA

Access this online resource for additional instruction and practice with inverse trigonometric functions.
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Evaluate Expressions Involving Inverse Trigonometric Functions (http://openstax.org/l/evalinverstrig)

8.3 SECTION EXERCISES
Verbal

1. Why do the functions
and
have

different ranges?

2. Since the functions
and

are inverse functions, why is
not

equal to

3. Explain the meaning of

4. Most calculators do not
have a key to evaluate

Explain how this
can be done using the
cosine function or the
inverse cosine function.

5. Why must the domain of the
sine function, be
restricted to for the
inverse sine function to
exist?

6. Discuss why this statement
is incorrect:

for all

7. Determine whether the
following statement is true
or false and explain your
answer:

Algebraic

For the following exercises, evaluate the expressions.

8. 9. 10.

11. 12. 13.

14. 15. 16.

For the following exercises, use a calculator to evaluate each expression. Express answers to the nearest hundredth.

17. 18. 19.

20. 21.
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For the following exercises, find the angle in the given right triangle. Round answers to the nearest hundredth.

22. 23.

For the following exercises, find the exact value, if possible, without a calculator. If it is not possible, explain why.

24. 25. 26.

27. 28. 29.

30. 31. 32.

33. 34. 35.

36.

For the following exercises, find the exact value of the expression in terms of with the help of a reference triangle.

37. 38. 39.

40. 41.

Extensions

For the following exercises, evaluate the expression without using a calculator. Give the exact value.

42.

For the following exercises, find the function if

43. 44. 45.

46. 47.
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Graphical

48. Graph and
state the domain and
range of the function.

49. Graph and
state the domain and
range of the function.

50. Graph one cycle of
and state the

domain and range of the
function.

51. For what value of does
Use a

graphing calculator to
approximate the answer.

52. For what value of does
Use a

graphing calculator to
approximate the answer.

Real-World Applications

53. Suppose a 13-foot ladder is
leaning against a building,
reaching to the bottom of a
second-floor window 12
feet above the ground.
What angle, in radians,
does the ladder make with
the building?

54. Suppose you drive 0.6
miles on a road so that the
vertical distance changes
from 0 to 150 feet. What is
the angle of elevation of
the road?

55. An isosceles triangle has
two congruent sides of
length 9 inches. The
remaining side has a
length of 8 inches. Find the
angle that a side of 9
inches makes with the
8-inch side.

56. Without using a calculator,
approximate the value of

Explain
why your answer is
reasonable.

57. A truss (interior beam
structure) for the roof of a
house is constructed from
two identical right
triangles. Each has a base
of 12 feet and height of 4
feet. Find the measure of
the acute angle adjacent to
the 4-foot side.

58. The line passes
through the origin in the
x,y-plane. What is the
measure of the angle that
the line makes with the
positive x-axis?

59. The line passes
through the origin in the
x,y-plane. What is the
measure of the angle that
the line makes with the
negative x-axis?

60. What percentage grade
should a road have if the
angle of elevation of the
road is 4 degrees? (The
percentage grade is
defined as the change in
the altitude of the road
over a 100-foot horizontal
distance. For example a 5%
grade means that the road
rises 5 feet for every 100
feet of horizontal distance.)

61. A 20-foot ladder leans up
against the side of a
building so that the foot of
the ladder is 10 feet from
the base of the building. If
specifications call for the
ladder's angle of elevation
to be between 35 and 45
degrees, does the
placement of this ladder
satisfy safety
specifications?

62. Suppose a 15-foot ladder
leans against the side of a
house so that the angle of
elevation of the ladder is 42
degrees. How far is the
foot of the ladder from the
side of the house?
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Chapter Review
Key Terms
amplitude the vertical height of a function; the constant appearing in the definition of a sinusoidal function
arccosine another name for the inverse cosine;
arcsine another name for the inverse sine;
arctangent another name for the inverse tangent;
inverse cosine function the function which is the inverse of the cosine function and the angle that has a

cosine equal to a given number
inverse sine function the function which is the inverse of the sine function and the angle that has a sine equal

to a given number
inverse tangent function the function which is the inverse of the tangent function and the angle that has a

tangent equal to a given number
midline the horizontal line where appears in the general form of a sinusoidal function
periodic function a function that satisfies for a specific constant and any value of
phase shift the horizontal displacement of the basic sine or cosine function; the constant
sinusoidal function any function that can be expressed in the form or

Key Equations

Sinusoidal functions

Shifted, compressed, and/or stretched tangent function

Shifted, compressed, and/or stretched secant function

Shifted, compressed, and/or stretched cosecant function

Shifted, compressed, and/or stretched cotangent function

Key Concepts
8.1 Graphs of the Sine and Cosine Functions

• Periodic functions repeat after a given value. The smallest such value is the period. The basic sine and cosine
functions have a period of

• The function is odd, so its graph is symmetric about the origin. The function is even, so its graph is
symmetric about the y-axis.

• The graph of a sinusoidal function has the same general shape as a sine or cosine function.
• In the general formula for a sinusoidal function, the period is See Example 1.

• In the general formula for a sinusoidal function, represents amplitude. If the function is stretched,
whereas if the function is compressed. See Example 2.

• The value in the general formula for a sinusoidal function indicates the phase shift. See Example 3.
• The value in the general formula for a sinusoidal function indicates the vertical shift from the midline. See

Example 4.
• Combinations of variations of sinusoidal functions can be detected from an equation. See Example 5.
• The equation for a sinusoidal function can be determined from a graph. See Example 6 and Example 7.
• A function can be graphed by identifying its amplitude and period. See Example 8 and Example 9.
• A function can also be graphed by identifying its amplitude, period, phase shift, and horizontal shift. See Example

10.
• Sinusoidal functions can be used to solve real-world problems. See Example 11, Example 12, and Example 13.
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8.2 Graphs of the Other Trigonometric Functions

• The tangent function has period
• is a tangent with vertical and/or horizontal stretch/compression and shift. See Example

1, Example 2, and Example 3.
• The secant and cosecant are both periodic functions with a period of gives a shifted,

compressed, and/or stretched secant function graph. See Example 4 and Example 5.
• gives a shifted, compressed, and/or stretched cosecant function graph. See Example 6

and Example 7.
• The cotangent function has period and vertical asymptotes at

• The range of cotangent is ∞ ∞ and the function is decreasing at each point in its range.

• The cotangent is zero at
• is a cotangent with vertical and/or horizontal stretch/compression and shift. See

Example 8 and Example 9.
• Real-world scenarios can be solved using graphs of trigonometric functions. See Example 10.

8.3 Inverse Trigonometric Functions

• An inverse function is one that “undoes” another function. The domain of an inverse function is the range of the
original function and the range of an inverse function is the domain of the original function.

• Because the trigonometric functions are not one-to-one on their natural domains, inverse trigonometric functions
are defined for restricted domains.

• For any trigonometric function if then However, only implies if is
in the restricted domain of See Example 1.

• Special angles are the outputs of inverse trigonometric functions for special input values; for example,
See Example 2.

• A calculator will return an angle within the restricted domain of the original trigonometric function. See Example 3.
• Inverse functions allow us to find an angle when given two sides of a right triangle. See Example 4.
• In function composition, if the inside function is an inverse trigonometric function, then there are exact expressions;

for example, See Example 5.
• If the inside function is a trigonometric function, then the only possible combinations are if

and if See Example 6 and Example 7.
• When evaluating the composition of a trigonometric function with an inverse trigonometric function, draw a

reference triangle to assist in determining the ratio of sides that represents the output of the trigonometric
function. See Example 8.

• When evaluating the composition of a trigonometric function with an inverse trigonometric function, you may use
trig identities to assist in determining the ratio of sides. See Example 9.

Exercises
Review Exercises
Graphs of the Sine and Cosine Functions

For the following exercises, graph the functions for two periods and determine the amplitude or stretching factor,
period, midline equation, and asymptotes.

1. 2. 3.

4. 5. 6.

7. 8.
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Graphs of the Other Trigonometric Functions

For the following exercises, graph the functions for two periods and determine the amplitude or stretching factor,
period, midline equation, and asymptotes.

9. 10. 11.

12.

For the following exercises, graph two full periods. Identify the period, the phase shift, the amplitude, and asymptotes.

13. 14. 15.

16. 17. 18.

For the following exercises, use this scenario: The population of a city has risen and fallen over a 20-year interval. Its
population may be modeled by the following function: where the domain is the years
since 1980 and the range is the population of the city.

19. What is the largest and
smallest population the city
may have?

20. Graph the function on the
domain of .

21. What are the amplitude,
period, and phase shift for
the function?

22. Over this domain, when
does the population reach
18,000? 13,000?

23. What is the predicted
population in 2007? 2010?
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For the following exercises, suppose a weight is attached to a spring and bobs up and down, exhibiting symmetry.

24. Suppose the graph of the displacement function is
shown in Figure 1, where the values on the x-axis
represent the time in seconds and the y-axis
represents the displacement in inches. Give the
equation that models the vertical displacement of
the weight on the spring.

Figure 1

25. At time = 0, what is the displacement of the
weight?

26. At what time does the displacement from the
equilibrium point equal zero?

27. What is the time required for the weight to return
to its initial height of 5 inches? In other words,
what is the period for the displacement function?

Inverse Trigonometric Functions

For the following exercises, find the exact value without the aid of a calculator.

28. 29. 30.

31. 32. 33.

34. 35. 36.

37. 38. 39. Graph and
on the

interval and explain
any observations.
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40. Graph and
and explain

any observations.

41. Graph the function

on the interval and
compare the graph to the
graph of on
the same interval. Describe
any observations.

Practice Test
For the following exercises, sketch the graph of each function for two full periods. Determine the amplitude, the period,
and the equation for the midline.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13.

For the following exercises, determine the amplitude, period, and midline of the graph, and then find a formula for the
function.

14. Give in terms of a sine function. 15. Give in terms of a sine function.
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16. Give in terms of a tangent
function.

For the following exercises, find the amplitude, period, phase shift, and midline.

17. 18.

19. The outside temperature over the course of a day
can be modeled as a sinusoidal function. Suppose
you know the temperature is 68°F at midnight and
the high and low temperatures during the day are
80°F and 56°F, respectively. Assuming is the
number of hours since midnight, find a function
for the temperature, in terms of

20. Water is pumped into a storage bin and empties
according to a periodic rate. The depth of the
water is 3 feet at its lowest at 2:00 a.m. and 71 feet
at its highest, which occurs every 5 hours. Write a
cosine function that models the depth of the
water as a function of time, and then graph the
function for one period.

For the following exercises, find the period and horizontal shift of each function.

21. 22.

23. Write the equation for the graph in Figure 1 in
terms of the secant function and give the period
and phase shift.

Figure 1

24. If find

25. If find
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For the following exercises, graph the functions on the specified window and answer the questions.

26. Graph

on the viewing window
by

Approximate the graph’s
period.

27. Graph
on

the following domains in
and

Suppose this function
models sound waves. Why
would these views look so
different?

28. Graph on
and explain any

observations.

For the following exercises, let

29. What is the largest possible
value for

30. What is the smallest
possible value for

31. Where is the function
increasing on the interval

For the following exercises, find and graph one period of the periodic function with the given amplitude, period, and
phase shift.

32. Sine curve with amplitude
3, period and phase
shift

33. Cosine curve with
amplitude 2, period and
phase shift

For the following exercises, graph the function. Describe the graph and, wherever applicable, any periodic behavior,
amplitude, asymptotes, or undefined points.

34. 35.

For the following exercises, find the exact value.

36. 37. 38.

39. 40. 41.

42. 43.

For the following exercises, suppose Evaluate the following expressions.

44. 45.
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46. Given Figure 2, find the measure of angle to
three decimal places. Answer in radians.

Figure 2

For the following exercises, determine whether the equation is true or false.

47. 48. 49. The grade of a road is 7%.
This means that for every
horizontal distance of 100
feet on the road, the
vertical rise is 7 feet. Find
the angle the road makes
with the horizontal in
radians.
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Tennis players can create advantages by changing the angles of their shots. The technology used to decide close calls
also relies heavily on mathematics. (credit: modification of "From the 2013 US Open" by Edwin Martinez/flickr)

Chapter Outline
9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify Trigonometric Expressions
9.2 Sum and Difference Identities
9.3 Double-Angle, Half-Angle, and Reduction Formulas
9.4 Sum-to-Product and Product-to-Sum Formulas
9.5 Solving Trigonometric Equations

Introduction to Trigonometric Identities and Equations
When we think of tennis as a game of angles, we may imagine players racing up to the net, creating options to deliver
powerful cross shots that will leave their opponent stumbling toward the line. This is an exciting and effective method of
play, though it brings greater risk.

But while the excitement of the game interplays with all types of geometry, some of the newest innovations make even
more use of mathematics. With balls traveling well over 100 miles per hour judges cannot always discern the centimeter
or millimeters of difference between a ball that is in or out of bounds. Professional tennis was among the first sports to
rely on an advanced tracking system called Hawk-Eye to help make close calls. The system uses several high-resolution
cameras that are able to monitor and the ball's movement and its position on the court. Using the images from several
cameras at once, the system's computers use trigonometric calculations to triangulate the ball's exact position and,
essentially, turn a series of two-dimensional images into a three-dimensional one. Also, since the ball travels faster than
the cameras' frame rate, the system also must make predictions to show where a ball is at all times. These technologies
generally provide a more accurate game that builds more confidence and fairness. Similar technologies are used for
baseball, and automated strike-calling is under discussion.

9.1 Verifying Trigonometric Identities and Using Trigonometric
Identities to Simplify Trigonometric Expressions
Learning Objectives
In this section, you will:

Verify the fundamental trigonometric identities.
Simplify trigonometric expressions using algebra and the identities.

TRIGONOMETRIC IDENTITIES AND EQUATIONS9
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Figure 1 International passports and travel documents

In espionage movies, we see international spies with multiple passports, each claiming a different identity. However, we
know that each of those passports represents the same person. The trigonometric identities act in a similar manner to
multiple passports—there are many ways to represent the same trigonometric expression. Just as a spy will choose an
Italian passport when traveling to Italy, we choose the identity that applies to the given scenario when solving a
trigonometric equation.

In this section, we will begin an examination of the fundamental trigonometric identities, including how we can verify
them and how we can use them to simplify trigonometric expressions.

Verifying the Fundamental Trigonometric Identities
Identities enable us to simplify complicated expressions. They are the basic tools of trigonometry used in solving
trigonometric equations, just as factoring, finding common denominators, and using special formulas are the basic tools
of solving algebraic equations. In fact, we use algebraic techniques constantly to simplify trigonometric expressions.
Basic properties and formulas of algebra, such as the difference of squares formula and the perfect squares formula, will
simplify the work involved with trigonometric expressions and equations. We already know that all of the trigonometric
functions are related because they all are defined in terms of the unit circle. Consequently, any trigonometric identity
can be written in many ways.

To verify the trigonometric identities, we usually start with the more complicated side of the equation and essentially
rewrite the expression until it has been transformed into the same expression as the other side of the equation.
Sometimes we have to factor expressions, expand expressions, find common denominators, or use other algebraic
strategies to obtain the desired result. In this first section, we will work with the fundamental identities: the Pythagorean
identities, the even-odd identities, the reciprocal identities, and the quotient identities.

We will begin with the Pythagorean identities (see Table 1), which are equations involving trigonometric functions
based on the properties of a right triangle. We have already seen and used the first of these identifies, but now we will
also use additional identities.

Pythagorean Identities

Table 1

The second and third identities can be obtained by manipulating the first. The identity is found by
rewriting the left side of the equation in terms of sine and cosine.

Prove:
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Similarly, can be obtained by rewriting the left side of this identity in terms of sine and cosine. This
gives

Recall that we determined which trigonometric functions are odd and which are even. The next set of fundamental
identities is the set of even-odd identities. The even-odd identities relate the value of a trigonometric function at a
given angle to the value of the function at the opposite angle. (See Table 2).

Even-Odd Identities

Table 2

Recall that an odd function is one in which for all in the domain of The sine function is an odd
function because The graph of an odd function is symmetric about the origin. For example, consider
corresponding inputs of and The output of is opposite the output of Thus,

This is shown in Figure 2.

Figure 2 Graph of

Recall that an even function is one in which

The graph of an even function is symmetric about the y-axis. The cosine function is an even function because
For example, consider corresponding inputs and The output of is the same as the
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output of Thus,

See Figure 3.

Figure 3 Graph of

For all in the domain of the sine and cosine functions, respectively, we can state the following:

• Since sine is an odd function.
• Since, cosine is an even function.

The other even-odd identities follow from the even and odd nature of the sine and cosine functions. For example,
consider the tangent identity, We can interpret the tangent of a negative angle as

Tangent is therefore an odd function, which means that for

all in the domain of the tangent function.

The cotangent identity, also follows from the sine and cosine identities. We can interpret the
cotangent of a negative angle as Cotangent is therefore an odd function, which

means that for all in the domain of the cotangent function.

The cosecant function is the reciprocal of the sine function, which means that the cosecant of a negative angle will be
interpreted as The cosecant function is therefore odd.

Finally, the secant function is the reciprocal of the cosine function, and the secant of a negative angle is interpreted as
The secant function is therefore even.

To sum up, only two of the trigonometric functions, cosine and secant, are even. The other four functions are odd,
verifying the even-odd identities.

The next set of fundamental identities is the set of reciprocal identities, which, as their name implies, relate
trigonometric functions that are reciprocals of each other. See Table 3. Recall that we first encountered these identities
when defining trigonometric functions from right angles in Right Angle Trigonometry.

Reciprocal Identities

Table 3

The final set of identities is the set of quotient identities, which define relationships among certain trigonometric
functions and can be very helpful in verifying other identities. See Table 4.
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Quotient Identities

Table 4

The reciprocal and quotient identities are derived from the definitions of the basic trigonometric functions.

Summarizing Trigonometric Identities

The Pythagorean identities are based on the properties of a right triangle.

The even-odd identities relate the value of a trigonometric function at a given angle to the value of the function at
the opposite angle.

The reciprocal identities define reciprocals of the trigonometric functions.

The quotient identities define the relationship among the trigonometric functions.

EXAMPLE 1

Graphing the Equations of an Identity
Graph both sides of the identity In other words, on the graphing calculator, graph and
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Solution
See Figure 4.

Figure 4

Analysis
We see only one graph because both expressions generate the same image. One is on top of the other. This is a good
way to confirm an identity verified with analytical means. If both expressions give the same graph, then they are most
likely identities.

HOW TO

Given a trigonometric identity, verify that it is true.

1. Work on one side of the equation. It is usually better to start with the more complex side, as it is easier to
simplify than to build.

2. Look for opportunities to factor expressions, square a binomial, or add fractions.
3. Noting which functions are in the final expression, look for opportunities to use the identities and make the

proper substitutions.
4. If these steps do not yield the desired result, try converting all terms to sines and cosines.

EXAMPLE 2

Verifying a Trigonometric Identity
Verify

Solution
We will start on the left side, as it is the more complicated side:

Analysis
This identity was fairly simple to verify, as it only required writing in terms of and

TRY IT #1 Verify the identity
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EXAMPLE 3

Verifying the Equivalency Using the Even-Odd Identities
Verify the following equivalency using the even-odd identities:

Solution
Working on the left side of the equation, we have

EXAMPLE 4

Verifying a Trigonometric Identity Involving sec2θ

Verify the identity

Solution
As the left side is more complicated, let’s begin there.

There is more than one way to verify an identity. Here is another possibility. Again, we can start with the left side.

Analysis
In the first method, we used the identity and continued to simplify. In the second method, we split the
fraction, putting both terms in the numerator over the common denominator. This problem illustrates that there are
multiple ways we can verify an identity. Employing some creativity can sometimes simplify a procedure. As long as the
substitutions are correct, the answer will be the same.

TRY IT #2 Show that

EXAMPLE 5

Creating and Verifying an Identity
Create an identity for the expression by rewriting strictly in terms of sine.
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Solution
There are a number of ways to begin, but here we will use the quotient and reciprocal identities to rewrite the
expression:

Thus,

EXAMPLE 6

Verifying an Identity Using Algebra and Even/Odd Identities
Verify the identity:

Solution
Let’s start with the left side and simplify:

TRY IT #3 Verify the identity

EXAMPLE 7

Verifying an Identity Involving Cosines and Cotangents
Verify the identity:

Solution
We will work on the left side of the equation.
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Using Algebra to Simplify Trigonometric Expressions
We have seen that algebra is very important in verifying trigonometric identities, but it is just as critical in simplifying
trigonometric expressions before solving. Being familiar with the basic properties and formulas of algebra, such as the
difference of squares formula, the perfect square formula, or substitution, will simplify the work involved with
trigonometric expressions and equations.

For example, the equation resembles the equation which uses the
factored form of the difference of squares. Using algebra makes finding a solution straightforward and familiar. We can
set each factor equal to zero and solve. This is one example of recognizing algebraic patterns in trigonometric
expressions or equations.

Another example is the difference of squares formula, which is widely used in many areas
other than mathematics, such as engineering, architecture, and physics. We can also create our own identities by
continually expanding an expression and making the appropriate substitutions. Using algebraic properties and formulas
makes many trigonometric equations easier to understand and solve.

EXAMPLE 8

Writing the Trigonometric Expression as an Algebraic Expression
Write the following trigonometric expression as an algebraic expression:

Solution
Notice that the pattern displayed has the same form as a standard quadratic expression, Letting

we can rewrite the expression as follows:

This expression can be factored as If it were set equal to zero and we wanted to solve the equation, we
would use the zero factor property and solve each factor for At this point, we would replace with and solve for

EXAMPLE 9

Rewriting a Trigonometric Expression Using the Difference of Squares
Rewrite the trigonometric expression using the difference of squares:

Solution
Notice that both the coefficient and the trigonometric expression in the first term are squared, and the square of the
number 1 is 1. This is the difference of squares.

Analysis
If this expression were written in the form of an equation set equal to zero, we could solve each factor using the zero
factor property. We could also use substitution like we did in the previous problem and let rewrite the
expression as and factor Then replace with and solve for the angle.

TRY IT #4 Rewrite the trigonometric expression using the difference of squares:

EXAMPLE 10

Simplify by Rewriting and Using Substitution
Simplify the expression by rewriting and using identities:
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Solution
We can start with the Pythagorean identity.

Now we can simplify by substituting for We have

TRY IT #5 Use algebraic techniques to verify the identity:

(Hint: Multiply the numerator and denominator on the left side by

MEDIA

Access these online resources for additional instruction and practice with the fundamental trigonometric identities.

Fundamental Trigonometric Identities (http://openstax.org/l/funtrigiden)
Verifying Trigonometric Identities (http://openstax.org/l/verifytrigiden)

9.1 SECTION EXERCISES
Verbal

1. We know is an
even function, and

and
are odd

functions. What about

and Are they
even, odd, or neither? Why?

2. Examine the graph of
on the interval

How can we tell
whether the function is even
or odd by only observing the
graph of

3. After examining the
reciprocal identity for
explain why the function is
undefined at certain points.

4. All of the Pythagorean
identities are related.
Describe how to manipulate
the equations to get from

to the
other forms.

Algebraic

For the following exercises, use the fundamental identities to fully simplify the expression.

5. 6. 7.

8. 9.

10. 11.

12. 13.
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14. 15.

For the following exercises, simplify the first trigonometric expression by writing the simplified form in terms of the
second expression.

16. 17. 18.

19. 20.

21. 22.

23. 24.

25. 26. 27.

28.

For the following exercises, verify the identity.

29. 30.

31. 32.

33.

Extensions

For the following exercises, prove or disprove the identity.

34. 35.

36. 37.

38. 39.

For the following exercises, determine whether the identity is true or false. If false, find an appropriate equivalent
expression.

40. 41. 42.
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9.2 Sum and Difference Identities
Learning Objectives
In this section, you will:

Use sum and difference formulas for cosine.
Use sum and difference formulas for sine.
Use sum and difference formulas for tangent.
Use sum and difference formulas for cofunctions.
Use sum and difference formulas to verify identities.

Figure 1 Mount McKinley, in Denali National Park, Alaska, rises 20,237 feet (6,168 m) above sea level. It is the highest
peak in North America. (credit: Daniel A. Leifheit, Flickr)

How can the height of a mountain be measured? What about the distance from Earth to the sun? Like many seemingly
impossible problems, we rely on mathematical formulas to find the answers. The trigonometric identities, commonly
used in mathematical proofs, have had real-world applications for centuries, including their use in calculating long
distances.

The trigonometric identities we will examine in this section can be traced to a Persian astronomer who lived around 950
AD, but the ancient Greeks discovered these same formulas much earlier and stated them in terms of chords. These are
special equations or postulates, true for all values input to the equations, and with innumerable applications.

In this section, we will learn techniques that will enable us to solve problems such as the ones presented above. The
formulas that follow will simplify many trigonometric expressions and equations. Keep in mind that, throughout this
section, the term formula is used synonymously with the word identity.

Using the Sum and Difference Formulas for Cosine
Finding the exact value of the sine, cosine, or tangent of an angle is often easier if we can rewrite the given angle in
terms of two angles that have known trigonometric values. We can use the special angles, which we can review in the
unit circle shown in Figure 2.

Figure 2 The Unit Circle
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We will begin with the sum and difference formulas for cosine, so that we can find the cosine of a given angle if we can
break it up into the sum or difference of two of the special angles. See Table 1.

Sum formula for cosine

Difference formula for cosine

Table 1

First, we will prove the difference formula for cosines. Let’s consider two points on the unit circle. See Figure 3. Point is
at an angle from the positive x-axis with coordinates and point is at an angle of from the positive
x-axis with coordinates Note the measure of angle is

Label two more points: at an angle of from the positive x-axis with coordinates and
point with coordinates Triangle is a rotation of triangle and thus the distance from to is the
same as the distance from to

Figure 3

We can find the distance from to using the distance formula.

Then we apply the Pythagorean identity and simplify.

Similarly, using the distance formula we can find the distance from to

Applying the Pythagorean identity and simplifying we get:

Because the two distances are the same, we set them equal to each other and simplify.
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Finally we subtract from both sides and divide both sides by

Thus, we have the difference formula for cosine. We can use similar methods to derive the cosine of the sum of two
angles.

Sum and Difference Formulas for Cosine

These formulas can be used to calculate the cosine of sums and differences of angles.

HOW TO

Given two angles, find the cosine of the difference between the angles.

1. Write the difference formula for cosine.
2. Substitute the values of the given angles into the formula.
3. Simplify.

EXAMPLE 1

Finding the Exact Value Using the Formula for the Cosine of the Difference of Two Angles
Using the formula for the cosine of the difference of two angles, find the exact value of

Solution
Begin by writing the formula for the cosine of the difference of two angles. Then substitute the given values.

Keep in mind that we can always check the answer using a graphing calculator in radian mode.

TRY IT #1 Find the exact value of

EXAMPLE 2

Finding the Exact Value Using the Formula for the Sum of Two Angles for Cosine
Find the exact value of

Solution
As we can evaluate as
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Keep in mind that we can always check the answer using a graphing calculator in degree mode.

Analysis
Note that we could have also solved this problem using the fact that

TRY IT #2 Find the exact value of

Using the Sum and Difference Formulas for Sine
The sum and difference formulas for sine can be derived in the same manner as those for cosine, and they resemble the
cosine formulas.

Sum and Difference Formulas for Sine

These formulas can be used to calculate the sines of sums and differences of angles.

HOW TO

Given two angles, find the sine of the difference between the angles.

1. Write the difference formula for sine.
2. Substitute the given angles into the formula.
3. Simplify.

EXAMPLE 3

Using Sum and Difference Identities to Evaluate the Difference of Angles
Use the sum and difference identities to evaluate the difference of the angles and show that part a equals part b.

ⓐ ⓑ
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Solution

ⓐ Let’s begin by writing the formula and substitute the given angles.

Next, we need to find the values of the trigonometric expressions.

Now we can substitute these values into the equation and simplify.

ⓑ Again, we write the formula and substitute the given angles.

Next, we find the values of the trigonometric expressions.

Now we can substitute these values into the equation and simplify.

EXAMPLE 4

Finding the Exact Value of an Expression Involving an Inverse Trigonometric Function
Find the exact value of Then check the answer with a graphing calculator.

Solution
The pattern displayed in this problem is Let and Then we can write

We will use the Pythagorean identities to find and
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Using the sum formula for sine,

Using the Sum and Difference Formulas for Tangent
Finding exact values for the tangent of the sum or difference of two angles is a little more complicated, but again, it is a
matter of recognizing the pattern.

Finding the sum of two angles formula for tangent involves taking quotient of the sum formulas for sine and cosine and
simplifying. Recall,

Let’s derive the sum formula for tangent.

We can derive the difference formula for tangent in a similar way.

Sum and Difference Formulas for Tangent

The sum and difference formulas for tangent are:
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HOW TO

Given two angles, find the tangent of the sum of the angles.

1. Write the sum formula for tangent.
2. Substitute the given angles into the formula.
3. Simplify.

EXAMPLE 5

Finding the Exact Value of an Expression Involving Tangent
Find the exact value of

Solution
Let’s first write the sum formula for tangent and then substitute the given angles into the formula.

Next, we determine the individual function values within the formula:

So we have

TRY IT #3 Find the exact value of

EXAMPLE 6

Finding Multiple Sums and Differences of Angles
Given find

ⓐ ⓑ ⓒ ⓓ
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Solution
We can use the sum and difference formulas to identify the sum or difference of angles when the ratio of sine, cosine, or
tangent is provided for each of the individual angles. To do so, we construct what is called a reference triangle to help
find each component of the sum and difference formulas.

ⓐ To find we begin with and The side opposite has length 3, the hypotenuse has
length 5, and is in the first quadrant. See Figure 4. Using the Pythagorean Theorem, we can find the length of side

Figure 4

Since and the side adjacent to is the hypotenuse is 13, and is in the third quadrant.
See Figure 5. Again, using the Pythagorean Theorem, we have

Since is in the third quadrant,
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Figure 5

The next step is finding the cosine of and the sine of The cosine of is the adjacent side over the hypotenuse. We
can find it from the triangle in Figure 5: We can also find the sine of from the triangle in Figure 5, as

opposite side over the hypotenuse: Now we are ready to evaluate

ⓑ We can find in a similar manner. We substitute the values according to the formula.

ⓒ For if and then

If and then

Then,
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ⓓ To find we have the values we need. We can substitute them in and evaluate.

Analysis
A common mistake when addressing problems such as this one is that we may be tempted to think that and are
angles in the same triangle, which of course, they are not. Also note that

Using Sum and Difference Formulas for Cofunctions
Now that we can find the sine, cosine, and tangent functions for the sums and differences of angles, we can use them to
do the same for their cofunctions. You may recall from Right Triangle Trigonometry that, if the sum of two positive
angles is those two angles are complements, and the sum of the two acute angles in a right triangle is so they are
also complements. In Figure 6, notice that if one of the acute angles is labeled as then the other acute angle must be
labeled

Notice also that which is opposite over hypotenuse. Thus, when two angles are complementary,
we can say that the sine of equals the cofunction of the complement of Similarly, tangent and cotangent are
cofunctions, and secant and cosecant are cofunctions.

Figure 6

From these relationships, the cofunction identities are formed. Recall that you first encountered these identities in The
Unit Circle: Sine and Cosine Functions.
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Cofunction Identities

The cofunction identities are summarized in Table 2.

Table 2

Notice that the formulas in the table may also justified algebraically using the sum and difference formulas. For example,
using

we can write

EXAMPLE 7

Finding a Cofunction with the Same Value as the Given Expression
Write in terms of its cofunction.

Solution
The cofunction of Thus,

TRY IT #4 Write in terms of its cofunction.

Using the Sum and Difference Formulas to Verify Identities
Verifying an identity means demonstrating that the equation holds for all values of the variable. It helps to be very
familiar with the identities or to have a list of them accessible while working the problems. Reviewing the general rules
presented earlier may help simplify the process of verifying an identity.

HOW TO

Given an identity, verify using sum and difference formulas.

1. Begin with the expression on the side of the equal sign that appears most complex. Rewrite that expression until
it matches the other side of the equal sign. Occasionally, we might have to alter both sides, but working on only
one side is the most efficient.

2. Look for opportunities to use the sum and difference formulas.
3. Rewrite sums or differences of quotients as single quotients.
4. If the process becomes cumbersome, rewrite the expression in terms of sines and cosines.
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EXAMPLE 8

Verifying an Identity Involving Sine
Verify the identity

Solution
We see that the left side of the equation includes the sines of the sum and the difference of angles.

We can rewrite each using the sum and difference formulas.

We see that the identity is verified.

EXAMPLE 9

Verifying an Identity Involving Tangent
Verify the following identity.

Solution
We can begin by rewriting the numerator on the left side of the equation.

We see that the identity is verified. In many cases, verifying tangent identities can successfully be accomplished by
writing the tangent in terms of sine and cosine.

TRY IT #5 Verify the identity:

EXAMPLE 10

Using Sum and Difference Formulas to Solve an Application Problem
Let and denote two non-vertical intersecting lines, and let denote the acute angle between and See
Figure 7. Show that

where and are the slopes of and respectively. (Hint: Use the fact that and )
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Figure 7

Solution
Using the difference formula for tangent, this problem does not seem as daunting as it might.

EXAMPLE 11

Investigating a Guy-wire Problem
For a climbing wall, a guy-wire is attached 47 feet high on a vertical pole. Added support is provided by another guy-
wire attached 40 feet above ground on the same pole. If the wires are attached to the ground 50 feet from the pole,
find the angle between the wires. See Figure 8.

Figure 8

Solution
Let’s first summarize the information we can gather from the diagram. As only the sides adjacent to the right angle are
known, we can use the tangent function. Notice that and We can then use difference
formula for tangent.

Now, substituting the values we know into the formula, we have

Use the distributive property, and then simplify the functions.
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Now we can calculate the angle in degrees.

Analysis

Occasionally, when an application appears that includes a right triangle, we may think that solving is a matter of
applying the Pythagorean Theorem. That may be partially true, but it depends on what the problem is asking and what
information is given.

MEDIA

Access these online resources for additional instruction and practice with sum and difference identities.

Sum and Difference Identities for Cosine (http://openstax.org/l/sumdifcos)
Sum and Difference Identities for Sine (http://openstax.org/l/sumdifsin)
Sum and Difference Identities for Tangent (http://openstax.org/l/sumdiftan)

9.2 SECTION EXERCISES
Verbal

1. Explain the basis for the
cofunction identities and
when they apply.

2. Is there only one way to
evaluate Explain
how to set up the solution in
two different ways, and then
compute to make sure they
give the same answer.

3. Explain to someone who has
forgotten the even-odd
properties of sinusoidal
functions how the addition
and subtraction formulas
can determine this
characteristic for

and
(Hint:

)

Algebraic

For the following exercises, find the exact value.

4. 5. 6.

7. 8. 9.

For the following exercises, rewrite in terms of and

10. 11. 12.
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13.

For the following exercises, simplify the given expression.

14. 15. 16.

17. 18. 19.

For the following exercises, find the requested information.

20. Given that and

with and
both in the interval
find and

21. Given that and

with and
both in the interval
find and

For the following exercises, find the exact value of each expression.

22. 23. 24.

Graphical

For the following exercises, simplify the expression, and then graph both expressions as functions to verify the graphs
are identical. Confirm your answer using a graphing calculator.

25. 26. 27.

28. 29. 30.

31. 32.

For the following exercises, use a graph to determine whether the functions are the same or different. If they are the
same, show why. If they are different, replace the second function with one that is identical to the first. (Hint: think

)

33.

34.

35. 36.

37. 38.

39.
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40. 41.

Technology

For the following exercises, find the exact value algebraically, and then confirm the answer with a calculator to the fourth
decimal point.

42. 43. 44.

45. 46.

Extensions

For the following exercises, prove the identities provided.

47. 48. 49.

50. 51.

For the following exercises, prove or disprove the statements.

52. 53.

54. 55. If and are angles in the same triangle, then
prove or disprove

56. If and are angles in the same
triangle, then prove or disprove

9.3 Double-Angle, Half-Angle, and Reduction Formulas
Learning Objectives
In this section, you will:

Use double-angle formulas to find exact values.
Use double-angle formulas to verify identities.
Use reduction formulas to simplify an expression.
Use half-angle formulas to find exact values.
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Figure 1 Bicycle and skateboard ramps for advanced riders have a steeper incline than those designed for novices.

Bicycle and skateboard ramps made for competition (see Figure 1) must vary in height depending on the skill level of the
competitors. For advanced competitors, the angle formed by the ramp and the ground should be such that
The angle is divided in half for novices. What is the steepness of the ramp for novices? In this section, we will investigate
three additional categories of identities that we can use to answer questions such as this one.

Using Double-Angle Formulas to Find Exact Values
In the previous section, we used addition and subtraction formulas for trigonometric functions. Now, we take another
look at those same formulas. The double-angle formulas are a special case of the sum formulas, where Deriving
the double-angle formula for sine begins with the sum formula,

If we let then we have

Deriving the double-angle for cosine gives us three options. First, starting from the sum formula,
and letting we have

Using the Pythagorean properties, we can expand this double-angle formula for cosine and get two more variations. The
first variation is:

The second variation is:

Similarly, to derive the double-angle formula for tangent, replacing in the sum formula gives

Double-Angle Formulas

The double-angle formulas are summarized as follows:
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HOW TO

Given the tangent of an angle and the quadrant in which it is located, use the double-angle formulas to find
the exact value.

1. Draw a triangle to reflect the given information.
2. Determine the correct double-angle formula.
3. Substitute values into the formula based on the triangle.
4. Simplify.

EXAMPLE 1

Using a Double-Angle Formula to Find the Exact Value Involving Tangent
Given that and is in quadrant II, find the following:

ⓐ ⓑ ⓒ
Solution

If we draw a triangle to reflect the information given, we can find the values needed to solve the problems on the image.
We are given such that is in quadrant II. The tangent of an angle is equal to the opposite side over the
adjacent side, and because is in the second quadrant, the adjacent side is on the x-axis and is negative. Use the
Pythagorean Theorem to find the length of the hypotenuse:

Now we can draw a triangle similar to the one shown in Figure 2.

Figure 2
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ⓐ Let’s begin by writing the double-angle formula for sine.

We see that we to need to find and Based on Figure 2, we see that the hypotenuse equals 5, so
and Substitute these values into the equation, and simplify.

Thus,

ⓑ Write the double-angle formula for cosine.

Again, substitute the values of the sine and cosine into the equation, and simplify.

ⓒ Write the double-angle formula for tangent.

In this formula, we need the tangent, which we were given as Substitute this value into the equation,
and simplify.

TRY IT #1 Given with in quadrant I, find

EXAMPLE 2

Using the Double-Angle Formula for Cosine without Exact Values
Use the double-angle formula for cosine to write in terms of

Solution

Analysis
This example illustrates that we can use the double-angle formula without having exact values. It emphasizes that the
pattern is what we need to remember and that identities are true for all values in the domain of the trigonometric
function.

Using Double-Angle Formulas to Verify Identities
Establishing identities using the double-angle formulas is performed using the same steps we used to derive the sum
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and difference formulas. Choose the more complicated side of the equation and rewrite it until it matches the other side.

EXAMPLE 3

Using the Double-Angle Formulas to Verify an Identity
Verify the following identity using double-angle formulas:

Solution
We will work on the right side of the equal sign and rewrite the expression until it matches the left side.

Analysis
This process is not complicated, as long as we recall the perfect square formula from algebra:

where and Part of being successful in mathematics is the ability to recognize patterns. While the
terms or symbols may change, the algebra remains consistent.

TRY IT #2 Verify the identity:

EXAMPLE 4

Verifying a Double-Angle Identity for Tangent
Verify the identity:

Solution
In this case, we will work with the left side of the equation and simplify or rewrite until it equals the right side of the
equation.

Analysis
Here is a case where the more complicated side of the initial equation appeared on the right, but we chose to work the
left side. However, if we had chosen the left side to rewrite, we would have been working backwards to arrive at the
equivalency. For example, suppose that we wanted to show

Let’s work on the right side.
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When using the identities to simplify a trigonometric expression or solve a trigonometric equation, there are usually
several paths to a desired result. There is no set rule as to what side should be manipulated. However, we should begin
with the guidelines set forth earlier.

TRY IT #3 Verify the identity:

Use Reduction Formulas to Simplify an Expression
The double-angle formulas can be used to derive the reduction formulas, which are formulas we can use to reduce the
power of a given expression involving even powers of sine or cosine. They allow us to rewrite the even powers of sine or
cosine in terms of the first power of cosine. These formulas are especially important in higher-level math courses,
calculus in particular. Also called the power-reducing formulas, three identities are included and are easily derived from
the double-angle formulas.

We can use two of the three double-angle formulas for cosine to derive the reduction formulas for sine and cosine. Let’s
begin with Solve for

Next, we use the formula Solve for

The last reduction formula is derived by writing tangent in terms of sine and cosine:

Reduction Formulas

The reduction formulas are summarized as follows:
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EXAMPLE 5

Writing an Equivalent Expression Not Containing Powers Greater Than 1
Write an equivalent expression for that does not involve any powers of sine or cosine greater than 1.

Solution
We will apply the reduction formula for cosine twice.

Analysis
The solution is found by using the reduction formula twice, as noted, and the perfect square formula from algebra.

EXAMPLE 6

Using the Power-Reducing Formulas to Prove an Identity
Use the power-reducing formulas to prove

Solution
We will work on simplifying the left side of the equation:

Analysis
Note that in this example, we substituted

for The formula states

We let so

TRY IT #4 Use the power-reducing formulas to prove that

Using Half-Angle Formulas to Find Exact Values
The next set of identities is the set of half-angle formulas, which can be derived from the reduction formulas and we
can use when we have an angle that is half the size of a special angle. If we replace with the half-angle formula for
sine is found by simplifying the equation and solving for Note that the half-angle formulas are preceded by a
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sign. This does not mean that both the positive and negative expressions are valid. Rather, it depends on the quadrant in
which terminates.

The half-angle formula for sine is derived as follows:

To derive the half-angle formula for cosine, we have

For the tangent identity, we have

Half-Angle Formulas

The half-angle formulas are as follows:

EXAMPLE 7

Using a Half-Angle Formula to Find the Exact Value of a Sine Function
Find using a half-angle formula.

Solution
Since we use the half-angle formula for sine:
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Remember that we can check the answer with a graphing calculator.

Analysis
Notice that we used only the positive root because is positive.

HOW TO

Given the tangent of an angle and the quadrant in which the angle lies, find the exact values of trigonometric
functions of half of the angle.

1. Draw a triangle to represent the given information.
2. Determine the correct half-angle formula.
3. Substitute values into the formula based on the triangle.
4. Simplify.

EXAMPLE 8

Finding Exact Values Using Half-Angle Identities
Given that and lies in quadrant III, find the exact value of the following:

ⓐ ⓑ ⓒ
Solution

Using the given information, we can draw the triangle shown in Figure 3. Using the Pythagorean Theorem, we find the
hypotenuse to be 17. Therefore, we can calculate and

Figure 3
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ⓐ Before we start, we must remember that if is in quadrant III, then so This
means that the terminal side of is in quadrant II, since
To find we begin by writing the half-angle formula for sine. Then we substitute the value of the cosine we
found from the triangle in Figure 3 and simplify.

We choose the positive value of because the angle terminates in quadrant II and sine is positive in quadrant II.

ⓑ To find we will write the half-angle formula for cosine, substitute the value of the cosine we found from
the triangle in Figure 3, and simplify.

We choose the negative value of because the angle is in quadrant II because cosine is negative in quadrant II.

ⓒ To find we write the half-angle formula for tangent. Again, we substitute the value of the cosine we found
from the triangle in Figure 3 and simplify.

We choose the negative value of because lies in quadrant II, and tangent is negative in quadrant II.
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TRY IT #5 Given that and lies in quadrant IV, find the exact value of

EXAMPLE 9

Finding the Measurement of a Half Angle
Now, we will return to the problem posed at the beginning of the section. A bicycle ramp is constructed for high-level
competition with an angle of formed by the ramp and the ground. Another ramp is to be constructed half as steep for
novice competition. If for higher-level competition, what is the measurement of the angle for novice
competition?

Solution
Since the angle for novice competition measures half the steepness of the angle for the high level competition, and

for high competition, we can find from the right triangle and the Pythagorean theorem so that we can
use the half-angle identities. See Figure 4.

Figure 4

We see that We can use the half-angle formula for tangent: Since is in

the first quadrant, so is

We can take the inverse tangent to find the angle: So the angle of the ramp for novice competition
is

MEDIA

Access these online resources for additional instruction and practice with double-angle, half-angle, and reduction
formulas.

Double-Angle Identities (http://openstax.org/l/doubleangiden)
Half-Angle Identities (http://openstax.org/l/halfangleident)
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9.3 SECTION EXERCISES
Verbal

1. Explain how to determine the reduction identities
from the double-angle identity

2. Explain how to determine the double-angle
formula for using the double-angle
formulas for and

3. We can determine the half-angle formula for

by dividing the formula for

by Explain how to determine two
formulas for that do not involve any square
roots.

4. For the half-angle formula given in the previous
exercise for explain why dividing by 0 is
not a concern. (Hint: examine the values of
necessary for the denominator to be 0.)

Algebraic

For the following exercises, find the exact values of a) b) and c) without solving for

5. If and is in quadrant I. 6. If and is in quadrant I.

7. If and   is in quadrant III. 8. If and is in quadrant IV.

For the following exercises, find the values of the six trigonometric functions if the conditions provided hold.

9. and 10. and

For the following exercises, simplify to one trigonometric expression.

11. 12.

For the following exercises, find the exact value using half-angle formulas.

13. 14. 15.

16. 17. 18.

19.

For the following exercises, find the exact values of a) b) and c) without solving for when

20. If and is in
quadrant IV.

21. If and is in
quadrant III.

22. If and     is in

quadrant II.
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23. If and is in
quadrant II.

For the following exercises, use Figure 5 to find the requested half and double angles.

Figure 5

24. Find and 25. Find and

26. Find and 27. Find and

For the following exercises, simplify each expression. Do not evaluate.

28. 29. 30.

31. 32. 33.

For the following exercises, prove the given identity.

34. 35. 36.

37.

For the following exercises, rewrite the expression with an exponent no higher than 1.

38. 39. 40.

41. 42. 43.

44.

Technology

For the following exercises, reduce the equations to powers of one, and then check the answer graphically.

45. 46. 47.

48. 49. 50.

51. 52.
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For the following exercises, algebraically find an equivalent function, only in terms of and/or and then check
the answer by graphing both functions.

53. 54.

Extensions

For the following exercises, prove the identities.

55. 56. 57.

58. 59.

60. 61.

62.

63.

9.4 Sum-to-Product and Product-to-Sum Formulas
Learning Objectives
In this section, you will:

Express products as sums.
Express sums as products.

Figure 1 The UCLA marching band (credit: Eric Chan, Flickr).

A band marches down the field creating an amazing sound that bolsters the crowd. That sound travels as a wave that
can be interpreted using trigonometric functions. For example, Figure 2 represents a sound wave for the musical note A.
In this section, we will investigate trigonometric identities that are the foundation of everyday phenomena such as
sound waves.
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Figure 2

Expressing Products as Sums
We have already learned a number of formulas useful for expanding or simplifying trigonometric expressions, but
sometimes we may need to express the product of cosine and sine as a sum. We can use the product-to-sum formulas,
which express products of trigonometric functions as sums. Let’s investigate the cosine identity first and then the sine
identity.

Expressing Products as Sums for Cosine
We can derive the product-to-sum formula from the sum and difference identities for cosine. If we add the two
equations, we get:

Then, we divide by to isolate the product of cosines:

HOW TO

Given a product of cosines, express as a sum.

1. Write the formula for the product of cosines.
2. Substitute the given angles into the formula.
3. Simplify.

EXAMPLE 1

Writing the Product as a Sum Using the Product-to-Sum Formula for Cosine
Write the following product of cosines as a sum:

Solution
We begin by writing the formula for the product of cosines:

We can then substitute the given angles into the formula and simplify.

TRY IT #1 Use the product-to-sum formula to write the product as a sum or difference:

Expressing the Product of Sine and Cosine as a Sum
Next, we will derive the product-to-sum formula for sine and cosine from the sum and difference formulas for sine. If we
add the sum and difference identities, we get:
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Then, we divide by 2 to isolate the product of cosine and sine:

EXAMPLE 2

Writing the Product as a Sum Containing only Sine or Cosine
Express the following product as a sum containing only sine or cosine and no products:

Solution
Write the formula for the product of sine and cosine. Then substitute the given values into the formula and simplify.

TRY IT #2 Use the product-to-sum formula to write the product as a sum:

Expressing Products of Sines in Terms of Cosine
Expressing the product of sines in terms of cosine is also derived from the sum and difference identities for cosine. In
this case, we will first subtract the two cosine formulas:

Then, we divide by 2 to isolate the product of sines:

Similarly we could express the product of cosines in terms of sine or derive other product-to-sum formulas.

The Product-to-Sum Formulas

The product-to-sum formulas are as follows:

EXAMPLE 3

Express the Product as a Sum or Difference
Write as a sum or difference.
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Solution
We have the product of cosines, so we begin by writing the related formula. Then we substitute the given angles and
simplify.

TRY IT #3 Use the product-to-sum formula to evaluate

Expressing Sums as Products
Some problems require the reverse of the process we just used. The sum-to-product formulas allow us to express sums
of sine or cosine as products. These formulas can be derived from the product-to-sum identities. For example, with a few
substitutions, we can derive the sum-to-product identity for sine. Let and

Then,

Thus, replacing and in the product-to-sum formula with the substitute expressions, we have

The other sum-to-product identities are derived similarly.

Sum-to-Product Formulas

The sum-to-product formulas are as follows:

EXAMPLE 4

Writing the Difference of Sines as a Product
Write the following difference of sines expression as a product:
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Solution
We begin by writing the formula for the difference of sines.

Substitute the values into the formula, and simplify.

TRY IT #4 Use the sum-to-product formula to write the sum as a product:

EXAMPLE 5

Evaluating Using the Sum-to-Product Formula
Evaluate Check the answer with a graphing calculator.

Solution
We begin by writing the formula for the difference of cosines.

Then we substitute the given angles and simplify.

EXAMPLE 6

Proving an Identity
Prove the identity:

Solution
We will start with the left side, the more complicated side of the equation, and rewrite the expression until it matches the
right side.
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Analysis

Recall that verifying trigonometric identities has its own set of rules. The procedures for solving an equation are not the
same as the procedures for verifying an identity. When we prove an identity, we pick one side to work on and make
substitutions until that side is transformed into the other side.

EXAMPLE 7

Verifying the Identity Using Double-Angle Formulas and Reciprocal Identities
Verify the identity

Solution
For verifying this equation, we are bringing together several of the identities. We will use the double-angle formula and
the reciprocal identities. We will work with the right side of the equation and rewrite it until it matches the left side.

TRY IT #5 Verify the identity

MEDIA

Access these online resources for additional instruction and practice with the product-to-sum and sum-to-product
identities.

Sum to Product Identities (http://openstax.org/l/sumtoprod)
Sum to Product and Product to Sum Identities (http://openstax.org/l/sumtpptsum)

9.4 SECTION EXERCISES
Verbal

1. Starting with the product to sum formula
explain

how to determine the formula for

2. Provide two different methods of calculating
one of which uses the product

to sum. Which method is easier?

3. Describe a situation where we would convert an
equation from a sum to a product and give an
example.

4. Describe a situation where we would convert an
equation from a product to a sum, and give an
example.

Algebraic

For the following exercises, rewrite the product as a sum or difference.

5. 6. 7.

8. 9. 10.
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For the following exercises, rewrite the sum or difference as a product.

11. 12. 13.

14. 15. 16.

For the following exercises, evaluate the product for the following using a sum or difference of two functions. Evaluate
exactly.

17. 18. 19.

20. 21.

For the following exercises, evaluate the product using a sum or difference of two functions. Leave in terms of sine and
cosine.

22. 23. 24.

25. 26.

For the following exercises, rewrite the sum as a product of two functions. Leave in terms of sine and cosine.

27. 28. 29.

30. 31.

For the following exercises, prove the identity.

32. 33.

34. 35.

36. 37.

38.

Numeric

For the following exercises, rewrite the sum as a product of two functions or the product as a sum of two functions. Give
your answer in terms of sines and cosines. Then evaluate the final answer numerically, rounded to four decimal places.

39. 40. 41.

42. 43.
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Technology

For the following exercises, algebraically determine whether each of the given equation is an identity. If it is not an
identity, replace the right-hand side with an expression equivalent to the left side. Verify the results by graphing both
expressions on a calculator.

44. 45.

46. 47.

48.

For the following exercises, simplify the expression to one term, then graph the original function and your simplified
version to verify they are identical.

49. 50.

51. 52.

53.

Extensions

For the following exercises, prove the following sum-to-product formulas.

54. 55.

For the following exercises, prove the identity.

56. 57.

58. 59.

60. 61.

62.

63.
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9.5 Solving Trigonometric Equations
Learning Objectives
In this section, you will:

Solve linear trigonometric equations in sine and cosine.
Solve equations involving a single trigonometric function.
Solve trigonometric equations using a calculator.
Solve trigonometric equations that are quadratic in form.
Solve trigonometric equations using fundamental identities.
Solve trigonometric equations with multiple angles.
Solve right triangle problems.

Figure 1 Egyptian pyramids standing near a modern city. (credit: Oisin Mulvihill)

Thales of Miletus (circa 625–547 BC) is known as the founder of geometry. The legend is that he calculated the height of
the Great Pyramid of Giza in Egypt using the theory of similar triangles, which he developed by measuring the shadow of
his staff. He reasoned that when the height of his staff's shadow was exactly equal to the actual height of the staff, then
the height of the nearby pyramid's shadow must also be equal to the height of the actual pyramid. Since the structures
and their shadows were creating a right triangle with two equal sides, they were similar triangles. By measuring the
length of the pyramid's shadow at that moment, he could obtain the height of the pyramid. Based on proportions, this
theory has applications in a number of areas, including fractal geometry, engineering, and architecture. Often, the angle
of elevation and the angle of depression are found using similar triangles.

In earlier sections of this chapter, we looked at trigonometric identities. Identities are true for all values in the domain of
the variable. In this section, we begin our study of trigonometric equations to study real-world scenarios such as the
finding the dimensions of the pyramids.

Solving Linear Trigonometric Equations in Sine and Cosine
Trigonometric equations are, as the name implies, equations that involve trigonometric functions. Similar in many ways
to solving polynomial equations or rational equations, only specific values of the variable will be solutions, if there are
solutions at all. Often we will solve a trigonometric equation over a specified interval. However, just as often, we will be
asked to find all possible solutions, and as trigonometric functions are periodic, solutions are repeated within each
period. In other words, trigonometric equations may have an infinite number of solutions. Additionally, like rational
equations, the domain of the function must be considered before we assume that any solution is valid. The period of
both the sine function and the cosine function is In other words, every units, the y-values repeat. If we need to
find all possible solutions, then we must add where is an integer, to the initial solution. Recall the rule that gives
the format for stating all possible solutions for a function where the period is

There are similar rules for indicating all possible solutions for the other trigonometric functions. Solving trigonometric
equations requires the same techniques as solving algebraic equations. We read the equation from left to right,
horizontally, like a sentence. We look for known patterns, factor, find common denominators, and substitute certain
expressions with a variable to make solving a more straightforward process. However, with trigonometric equations, we
also have the advantage of using the identities we developed in the previous sections.
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EXAMPLE 1

Solving a Linear Trigonometric Equation Involving the Cosine Function
Find all possible exact solutions for the equation

Solution
From the unit circle, we know that

These are the solutions in the interval All possible solutions are given by

where is an integer.

EXAMPLE 2

Solving a Linear Equation Involving the Sine Function
Find all possible exact solutions for the equation

Solution
Solving for all possible values of t means that solutions include angles beyond the period of From Figure 2, we can
see that the solutions are and But the problem is asking for all possible values that solve the equation.
Therefore, the answer is

where is an integer.

HOW TO

Given a trigonometric equation, solve using algebra.

1. Look for a pattern that suggests an algebraic property, such as the difference of squares or a factoring
opportunity.

2. Substitute the trigonometric expression with a single variable, such as or
3. Solve the equation the same way an algebraic equation would be solved.
4. Substitute the trigonometric expression back in for the variable in the resulting expressions.
5. Solve for the angle.

EXAMPLE 3

Solve the Linear Trigonometric Equation
Solve the equation exactly:

Solution
Use algebraic techniques to solve the equation.
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TRY IT #1 Solve exactly the following linear equation on the interval

Solving Equations Involving a Single Trigonometric Function
When we are given equations that involve only one of the six trigonometric functions, their solutions involve using
algebraic techniques and the unit circle (see Figure 2). We need to make several considerations when the equation
involves trigonometric functions other than sine and cosine. Problems involving the reciprocals of the primary
trigonometric functions need to be viewed from an algebraic perspective. In other words, we will write the reciprocal
function, and solve for the angles using the function. Also, an equation involving the tangent function is slightly different
from one containing a sine or cosine function. First, as we know, the period of tangent is not Further, the domain
of tangent is all real numbers with the exception of odd integer multiples of unless, of course, a problem places its
own restrictions on the domain.

EXAMPLE 4

Solving a Problem Involving a Single Trigonometric Function
Solve the problem exactly:

Solution
As this problem is not easily factored, we will solve using the square root property. First, we use algebra to isolate
Then we will find the angles.

EXAMPLE 5

Solving a Trigonometric Equation Involving Cosecant
Solve the following equation exactly:

Solution
We want all values of for which over the interval

Analysis
As notice that all four solutions are in the third and fourth quadrants.
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EXAMPLE 6

Solving an Equation Involving Tangent
Solve the equation exactly:

Solution
Recall that the tangent function has a period of On the interval and at the angle of the tangent has a value
of 1. However, the angle we want is Thus, if then

Over the interval we have two solutions:

TRY IT #2 Find all solutions for

EXAMPLE 7

Identify all Solutions to the Equation Involving Tangent
Identify all exact solutions to the equation

Solution
We can solve this equation using only algebra. Isolate the expression on the left side of the equals sign.

There are two angles on the unit circle that have a tangent value of and

Solve Trigonometric Equations Using a Calculator
Not all functions can be solved exactly using only the unit circle. When we must solve an equation involving an angle
other than one of the special angles, we will need to use a calculator. Make sure it is set to the proper mode, either
degrees or radians, depending on the criteria of the given problem.

EXAMPLE 8

Using a Calculator to Solve a Trigonometric Equation Involving Sine
Use a calculator to solve the equation where is in radians.

Solution
Make sure mode is set to radians. To find use the inverse sine function. On most calculators, you will need to push the
2ND button and then the SIN button to bring up the function. What is shown on the screen is The
calculator is ready for the input within the parentheses. For this problem, we enter and press ENTER. Thus,
to four decimals places,

The solution is

The angle measurement in degrees is
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Analysis
Note that a calculator will only return an angle in quadrants I or IV for the sine function, since that is the range of the
inverse sine. The other angle is obtained by using Thus, the additional solution is

EXAMPLE 9

Using a Calculator to Solve a Trigonometric Equation Involving Secant
Use a calculator to solve the equation giving your answer in radians.

Solution
We can begin with some algebra.

Check that the MODE is in radians. Now use the inverse cosine function.

Since and 1.8235 is between these two numbers, thus is in quadrant II. Cosine is also
negative in quadrant III. Note that a calculator will only return an angle in quadrants I or II for the cosine function, since
that is the range of the inverse cosine. See Figure 2.

Figure 2

So, we also need to find the measure of the angle in quadrant III. In quadrant II, the reference angle is

The other solution in quadrant III is

The solutions are and

TRY IT #3 Solve

Solving Trigonometric Equations in Quadratic Form
Solving a quadratic equation may be more complicated, but once again, we can use algebra as we would for any
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quadratic equation. Look at the pattern of the equation. Is there more than one trigonometric function in the equation,
or is there only one? Which trigonometric function is squared? If there is only one function represented and one of the
terms is squared, think about the standard form of a quadratic. Replace the trigonometric function with a variable such
as or If substitution makes the equation look like a quadratic equation, then we can use the same methods for
solving quadratics to solve the trigonometric equations.

EXAMPLE 10

Solving a Trigonometric Equation in Quadratic Form
Solve the equation exactly:

Solution
We begin by using substitution and replacing cos with It is not necessary to use substitution, but it may make the
problem easier to solve visually. Let We have

The equation cannot be factored, so we will use the quadratic formula

Replace with and solve.

Note that only the + sign is used. This is because we get an error when we solve on a calculator,

since the domain of the inverse cosine function is However, there is a second solution:

This terminal side of the angle lies in quadrant I. Since cosine is also positive in quadrant IV, the second solution is

EXAMPLE 11

Solving a Trigonometric Equation in Quadratic Form by Factoring
Solve the equation exactly:

Solution
Using grouping, this quadratic can be factored. Either make the real substitution, or imagine it, as we factor:

Now set each factor equal to zero.
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Next solve for as the range of the sine function is However, giving the solution

Analysis
Make sure to check all solutions on the given domain as some factors have no solution.

TRY IT #4 Solve [Hint: Make a substitution to express the equation only in
terms of cosine.]

EXAMPLE 12

Solving a Trigonometric Equation Using Algebra
Solve exactly:

Solution
This problem should appear familiar as it is similar to a quadratic. Let The equation becomes
We begin by factoring:

Set each factor equal to zero.

Then, substitute back into the equation the original expression for Thus,

The solutions within the domain are

If we prefer not to substitute, we can solve the equation by following the same pattern of factoring and setting each
factor equal to zero.
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Analysis
We can see the solutions on the graph in Figure 3. On the interval the graph crosses the x-axis four times, at
the solutions noted. Notice that trigonometric equations that are in quadratic form can yield up to four solutions instead
of the expected two that are found with quadratic equations. In this example, each solution (angle) corresponding to a
positive sine value will yield two angles that would result in that value.

Figure 3

We can verify the solutions on the unit circle in Figure 2 as well.

EXAMPLE 13

Solving a Trigonometric Equation Quadratic in Form
Solve the equation quadratic in form exactly:

Solution
We can factor using grouping. Solution values of can be found on the unit circle.

TRY IT #5 Solve the quadratic equation

Solving Trigonometric Equations Using Fundamental Identities
While algebra can be used to solve a number of trigonometric equations, we can also use the fundamental identities
because they make solving equations simpler. Remember that the techniques we use for solving are not the same as
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those for verifying identities. The basic rules of algebra apply here, as opposed to rewriting one side of the identity to
match the other side. In the next example, we use two identities to simplify the equation.

EXAMPLE 14

Use Identities to Solve an Equation
Use identities to solve exactly the trigonometric equation over the interval

Solution
Notice that the left side of the equation is the difference formula for cosine.

From the unit circle in Figure 2, we see that when

EXAMPLE 15

Solving the Equation Using a Double-Angle Formula
Solve the equation exactly using a double-angle formula:

Solution
We have three choices of expressions to substitute for the double-angle of cosine. As it is simpler to solve for one
trigonometric function at a time, we will choose the double-angle identity involving only cosine:

So, if then and if then

EXAMPLE 16

Solving an Equation Using an Identity
Solve the equation exactly using an identity:

Solution
If we rewrite the right side, we can write the equation in terms of cosine:
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Our solutions are

Solving Trigonometric Equations with Multiple Angles
Sometimes it is not possible to solve a trigonometric equation with identities that have a multiple angle, such as
or When confronted with these equations, recall that is a horizontal compression by a factor of 2 of
the function On an interval of we can graph two periods of as opposed to one cycle of

This compression of the graph leads us to believe there may be twice as many x-intercepts or solutions to
compared to This information will help us solve the equation.

EXAMPLE 17

Solving a Multiple Angle Trigonometric Equation
Solve exactly: on

Solution
We can see that this equation is the standard equation with a multiple of an angle. If we know is in
quadrants I and IV. While will only yield solutions in quadrants I and II, we recognize that the solutions to
the equation will be in quadrants I and IV.

Therefore, the possible angles are and So, or which means that or Does

this make sense? Yes, because

Are there any other possible answers? Let us return to our first step.

In quadrant I, so as noted. Let us revolve around the circle again:

so

One more rotation yields

so this value for is larger than so it is not a solution on

In quadrant IV, so as noted. Let us revolve around the circle again:
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so

One more rotation yields

so this value for is larger than so it is not a solution on

Our solutions are . Note that whenever we solve a problem in the form of we must
go around the unit circle times.

Solving Right Triangle Problems
We can now use all of the methods we have learned to solve problems that involve applying the properties of right
triangles and the Pythagorean Theorem. We begin with the familiar Pythagorean Theorem, and model an
equation to fit a situation.

EXAMPLE 18

Using the Pythagorean Theorem to Model an Equation
Use the Pythagorean Theorem, and the properties of right triangles to model an equation that fits the problem.

One of the cables that anchors the center of the London Eye Ferris wheel to the ground must be replaced. The center of
the Ferris wheel is 69.5 meters above the ground, and the second anchor on the ground is 23 meters from the base of
the Ferris wheel. Approximately how long is the cable, and what is the angle of elevation (from ground up to the center
of the Ferris wheel)? See Figure 4.

Figure 4

Solution
Using the information given, we can draw a right triangle. We can find the length of the cable with the Pythagorean
Theorem.

The angle of elevation is formed by the second anchor on the ground and the cable reaching to the center of the
wheel. We can use the tangent function to find its measure. Round to two decimal places.
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The angle of elevation is approximately and the length of the cable is 73.2 meters.

EXAMPLE 19

Using the Pythagorean Theorem to Model an Abstract Problem
OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall for every 4 feet of ladder length.
Find the angle that a ladder of any length forms with the ground and the height at which the ladder touches the wall.

Solution
For any length of ladder, the base needs to be a distance from the wall equal to one fourth of the ladder’s length.
Equivalently, if the base of the ladder is “a” feet from the wall, the length of the ladder will be 4a feet. See Figure 5.

Figure 5

The side adjacent to is a and the hypotenuse is Thus,

The elevation of the ladder forms an angle of with the ground. The height at which the ladder touches the wall can
be found using the Pythagorean Theorem:

Thus, the ladder touches the wall at feet from the ground.

MEDIA

Access these online resources for additional instruction and practice with solving trigonometric equations.

Solving Trigonometric Equations I (http://openstax.org/l/solvetrigeqI)
Solving Trigonometric Equations II (http://openstax.org/l/solvetrigeqII)
Solving Trigonometric Equations III (http://openstax.org/l/solvetrigeqIII)
Solving Trigonometric Equations IV (http://openstax.org/l/solvetrigeqIV)
Solving Trigonometric Equations V (http://openstax.org/l/solvetrigeqV)
Solving Trigonometric Equations VI (http://openstax.org/l/solvetrigeqVI)
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9.5 SECTION EXERCISES
Verbal

1. Will there always be
solutions to trigonometric
function equations? If not,
describe an equation that
would not have a solution.
Explain why or why not.

2. When solving a
trigonometric equation
involving more than one trig
function, do we always want
to try to rewrite the
equation so it is expressed
in terms of one
trigonometric function? Why
or why not?

3. When solving linear trig
equations in terms of only
sine or cosine, how do we
know whether there will be
solutions?

Algebraic

For the following exercises, find all solutions exactly on the interval

4. 5. 6.

7. 8. 9.

10. 11. 12.

For the following exercises, solve exactly on

13. 14. 15.

16. 17. 18.

19. 20. 21.

22.

For the following exercises, find all exact solutions on

23. 24. 25.

26. 27.

28. 29. 30.

31. 32.

For the following exercises, solve with the methods shown in this section exactly on the interval

33. 34.
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35. 36.

37. 38. 39.

40.

For the following exercises, solve exactly on the interval Use the quadratic formula if the equations do not factor.

41. 42. 43.

44. 45. 46.

47. 48. 49.

For the following exercises, find exact solutions on the interval Look for opportunities to use trigonometric
identities.

50. 51. 52.

53. 54. 55.

56. 57. 58.

59. 60. 61.

62. 63. 64.

65.

Graphical

For the following exercises, algebraically determine all solutions of the trigonometric equation exactly, then verify the
results by graphing the equation and finding the zeros.

66. 67. 68.

69. 70.

71. 72.

Technology

For the following exercises, use a calculator to find all solutions to four decimal places.

73. 74. 75.
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76.

For the following exercises, solve the equations algebraically, and then use a calculator to find the values on the interval
Round to four decimal places.

77. 78. 79.

80. 81. 82.

Extensions

For the following exercises, find all solutions exactly to the equations on the interval

83. 84.

85. 86.

87. 88.

89. 90.

91. 92.

Real-World Applications

93. An airplane has only
enough gas to fly to a city
200 miles northeast of its
current location. If the pilot
knows that the city is 25
miles north, how many
degrees north of east
should the airplane fly?

94. If a loading ramp is placed
next to a truck, at a height
of 4 feet, and the ramp is
15 feet long, what angle
does the ramp make with
the ground?

95. If a loading ramp is placed
next to a truck, at a height
of 2 feet, and the ramp is
20 feet long, what angle
does the ramp make with
the ground?

96. A woman is watching a
launched rocket currently
11 miles in altitude. If she
is standing 4 miles from
the launch pad, at what
angle is she looking up
from horizontal?

97. An astronaut is in a
launched rocket currently
15 miles in altitude. If a
man is standing 2 miles
from the launch pad, at
what angle is the astronaut
looking down at him from
horizontal? (Hint: this is
called the angle of
depression.)

98. A woman is standing 8
meters away from a
10-meter tall building. At
what angle is she looking
to the top of the building?
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99. Issa is standing 10 meters
away from a 6-meter tall
building. Travis is at the top
of the building looking
down at Issa. At what angle
is Travis looking at Issa?

100. A 20-foot tall building has
a shadow that is 55 feet
long. What is the angle of
elevation of the sun?

101. A 90-foot tall building has
a shadow that is 2 feet
long. What is the angle of
elevation of the sun?

102. A spotlight on the ground
3 meters from a 2-meter
tall man casts a 6 meter
shadow on a wall 6
meters from the man. At
what angle is the light?

103. A spotlight on the ground
3 feet from a 5-foot tall
woman casts a 15-foot tall
shadow on a wall 6 feet
from the woman. At what
angle is the light?

For the following exercises, find a solution to the following word problem algebraically. Then use a calculator to verify
the result. Round the answer to the nearest tenth of a degree.

104. A person does a
handstand with their feet
touching a wall and their
hands 1.5 feet away from
the wall. If the person is 6
feet tall, what angle do
their feet make with the
wall?

105. A person does a
handstand with her feet
touching a wall and her
hands 3 feet away from
the wall. If the person is 5
feet tall, what angle do
her feet make with the
wall?

106. A 23-foot ladder is
positioned next to a
house. If the ladder slips
at 7 feet from the house
when there is not enough
traction, what angle
should the ladder make
with the ground to avoid
slipping?
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Chapter Review
Key Terms
double-angle formulas identities derived from the sum formulas for sine, cosine, and tangent in which the angles are

equal
even-odd identities set of equations involving trigonometric functions such that if the identity is

odd, and if the identity is even
half-angle formulas identities derived from the reduction formulas and used to determine half-angle values of

trigonometric functions
product-to-sum formula a trigonometric identity that allows the writing of a product of trigonometric functions as a

sum or difference of trigonometric functions
Pythagorean identities set of equations involving trigonometric functions based on the right triangle properties
quotient identities pair of identities based on the fact that tangent is the ratio of sine and cosine, and cotangent is the

ratio of cosine and sine
reciprocal identities set of equations involving the reciprocals of basic trigonometric definitions
reduction formulas identities derived from the double-angle formulas and used to reduce the power of a

trigonometric function
sum-to-product formula a trigonometric identity that allows, by using substitution, the writing of a sum of

trigonometric functions as a product of trigonometric functions

Key Equations

Pythagorean identities

Even-odd identities

Reciprocal identities

Quotient identities

Sum Formula for Cosine

Difference Formula for Cosine

Sum Formula for Sine

Difference Formula for Sine
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Sum Formula for Tangent

Difference Formula for Tangent

Cofunction identities

Double-angle formulas

Reduction formulas

Half-angle formulas

Product-to-sum Formulas

Sum-to-product Formulas
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Key Concepts
9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify
Trigonometric Expressions

• There are multiple ways to represent a trigonometric expression. Verifying the identities illustrates how expressions
can be rewritten to simplify a problem.

• Graphing both sides of an identity will verify it. See Example 1.
• Simplifying one side of the equation to equal the other side is another method for verifying an identity. See Example

2 and Example 3.
• The approach to verifying an identity depends on the nature of the identity. It is often useful to begin on the more

complex side of the equation. See Example 4.
• We can create an identity and then verify it. See Example 5.
• Verifying an identity may involve algebra with the fundamental identities. See Example 6 and Example 7.
• Algebraic techniques can be used to simplify trigonometric expressions. We use algebraic techniques throughout

this text, as they consist of the fundamental rules of mathematics. See Example 8, Example 9, and Example 10.

9.2 Sum and Difference Identities

• The sum formula for cosines states that the cosine of the sum of two angles equals the product of the cosines of the
angles minus the product of the sines of the angles. The difference formula for cosines states that the cosine of the
difference of two angles equals the product of the cosines of the angles plus the product of the sines of the angles.

• The sum and difference formulas can be used to find the exact values of the sine, cosine, or tangent of an angle. See
Example 1 and Example 2.

• The sum formula for sines states that the sine of the sum of two angles equals the product of the sine of the first
angle and cosine of the second angle plus the product of the cosine of the first angle and the sine of the second
angle. The difference formula for sines states that the sine of the difference of two angles equals the product of the
sine of the first angle and cosine of the second angle minus the product of the cosine of the first angle and the sine
of the second angle. See Example 3.

• The sum and difference formulas for sine and cosine can also be used for inverse trigonometric functions. See
Example 4.

• The sum formula for tangent states that the tangent of the sum of two angles equals the sum of the tangents of the
angles divided by 1 minus the product of the tangents of the angles. The difference formula for tangent states that
the tangent of the difference of two angles equals the difference of the tangents of the angles divided by 1 plus the
product of the tangents of the angles. See Example 5.

• The Pythagorean Theorem along with the sum and difference formulas can be used to find multiple sums and
differences of angles. See Example 6.

• The cofunction identities apply to complementary angles and pairs of reciprocal functions. See Example 7.
• Sum and difference formulas are useful in verifying identities. See Example 8 and Example 9.
• Application problems are often easier to solve by using sum and difference formulas. See Example 10 and Example

11.

9.3 Double-Angle, Half-Angle, and Reduction Formulas

• Double-angle identities are derived from the sum formulas of the fundamental trigonometric functions: sine,
cosine, and tangent. See Example 1, Example 2, Example 3, and Example 4.

• Reduction formulas are especially useful in calculus, as they allow us to reduce the power of the trigonometric term.
See Example 5 and Example 6.

• Half-angle formulas allow us to find the value of trigonometric functions involving half-angles, whether the original
angle is known or not. See Example 7, Example 8, and Example 9.

9.4 Sum-to-Product and Product-to-Sum Formulas

• From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-product
formulas for sine and cosine.

• We can use the product-to-sum formulas to rewrite products of sines, products of cosines, and products of sine and
cosine as sums or differences of sines and cosines. See Example 1, Example 2, and Example 3.

• We can also derive the sum-to-product identities from the product-to-sum identities using substitution.
• We can use the sum-to-product formulas to rewrite sum or difference of sines, cosines, or products sine and cosine

as products of sines and cosines. See Example 4.
• Trigonometric expressions are often simpler to evaluate using the formulas. See Example 5.
• The identities can be verified using other formulas or by converting the expressions to sines and cosines. To verify
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an identity, we choose the more complicated side of the equals sign and rewrite it until it is transformed into the
other side. See Example 6 and Example 7.

9.5 Solving Trigonometric Equations

• When solving linear trigonometric equations, we can use algebraic techniques just as we do solving algebraic
equations. Look for patterns, like the difference of squares, quadratic form, or an expression that lends itself well to
substitution. See Example 1, Example 2, and Example 3.

• Equations involving a single trigonometric function can be solved or verified using the unit circle. See Example 4,
Example 5, and Example 6, and Example 7.

• We can also solve trigonometric equations using a graphing calculator. See Example 8 and Example 9.
• Many equations appear quadratic in form. We can use substitution to make the equation appear simpler, and then

use the same techniques we use solving an algebraic quadratic: factoring, the quadratic formula, etc. See Example
10, Example 11, Example 12, and Example 13.

• We can also use the identities to solve trigonometric equation. See Example 14, Example 15, and Example 16.
• We can use substitution to solve a multiple-angle trigonometric equation, which is a compression of a standard

trigonometric function. We will need to take the compression into account and verify that we have found all
solutions on the given interval. See Example 17.

• Real-world scenarios can be modeled and solved using the Pythagorean Theorem and trigonometric functions. See
Example 18.

Exercises
Review Exercises
Solving Trigonometric Equations with Identities

For the following exercises, find all solutions exactly that exist on the interval

1. 2. 3.

4. 5. 6.

For the following exercises, use basic identities to simplify the expression.

7. 8.

For the following exercises, determine if the given identities are equivalent.

9. 10.

Sum and Difference Identities

For the following exercises, find the exact value.

11. 12.

13. 14.

For the following exercises, prove the identity.

15. 16.
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For the following exercise, simplify the expression.

17.

For the following exercises, find the exact value.

18. 19.

Double-Angle, Half-Angle, and Reduction Formulas

For the following exercises, find the exact value.

20. Find and given
and is in the interval

21. Find and given
and is in the interval

22. 23.

For the following exercises, use Figure 1 to find the desired quantities.

Figure 1

24.

25.

For the following exercises, prove the identity.

26. 27.

For the following exercises, rewrite the expression with no powers.

28. 29.

Sum-to-Product and Product-to-Sum Formulas

For the following exercises, evaluate the product for the given expression using a sum or difference of two functions.
Write the exact answer.

30. 31. 32.

For the following exercises, evaluate the sum by using a product formula. Write the exact answer.

33. 34.
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For the following exercises, change the functions from a product to a sum or a sum to a product.

35. 36. 37.

38.

Solving Trigonometric Equations

For the following exercises, find all exact solutions on the interval

39. 40.

For the following exercises, find all exact solutions on the interval

41. 42. 43.

44. 45.

For the following exercises, simplify the equation algebraically as much as possible. Then use a calculator to find the
solutions on the interval Round to four decimal places.

46. 47.

For the following exercises, graph each side of the equation to find the approximate solutions on the interval

48. 49.

Practice Test
For the following exercises, simplify the given expression.

1. 2.

3. 4.

For the following exercises, find the exact value.

5. 6. 7.

8. 9. 10.

For the following exercises, simplify each expression. Do not evaluate.

11. 12.

For the following exercises, find all exact solutions to the equation on

13. 14.
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15. 16.

17. Rewrite the expression as a product instead of a
sum:

For the following exercise, rewrite the product as a sum or difference.

18.

For the following exercise, rewrite the sum or difference as a product.

19. 20. Find all solutions of 21. Find the solutions of
on

the interval
algebraically; then graph
both sides of the equation
to determine the answer.

For the following exercises, find all solutions exactly on the interval

22. 23. 24. Find and
given

and is on the interval

25. Find and
given

and is in quadrant IV.

26. Rewrite the expression
with no powers

greater than 1.

For the following exercises, prove the identity.

27. 28.

29. 30. Plot the points and find a function of the form
that fits the given data.
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31. The displacement in
centimeters of a mass
suspended by a spring is
modeled by the function

where
is measured in seconds.

Find the amplitude, period,
and frequency of this
displacement.

32. A woman is standing 300
feet away from a 2000-foot
building. If she looks to the
top of the building, at what
angle above horizontal is
she looking? A worker
looks down at her from the
15th floor (1500 feet above
her). At what angle is he
looking down at her?
Round to the nearest tenth
of a degree.

33. Two frequencies of sound are
played on an instrument
governed by the equation

What are the period and
frequency of the “fast” and
“slow” oscillations? What is the
amplitude?

34. The average monthly
snowfall in a small village
in the Himalayas is 6
inches, with the low of 1
inch occurring in July.
Construct a function that
models this behavior.
During what period is there
more than 10 inches of
snowfall?

35. A spring attached to a
ceiling is pulled down 20
cm. After 3 seconds,
wherein it completes 6 full
periods, the amplitude is
only 15 cm. Find the
function modeling the
position of the spring
seconds after being
released. At what time will
the spring come to rest? In
this case, use 1 cm
amplitude as rest.

36. Water levels near a glacier
currently average 9 feet,
varying seasonally by 2
inches above and below
the average and reaching
their highest point in
January. Due to global
warming, the glacier has
begun melting faster than
normal. Every year, the
water levels rise by a
steady 3 inches. Find a
function modeling the
depth of the water
months from now. If the
docks are 2 feet above
current water levels, at
what point will the water
first rise above the docks?
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General Sherman, the world’s largest living tree. (credit: Mike Baird, Flickr)

Chapter Outline
10.1 Non-right Triangles: Law of Sines
10.2 Non-right Triangles: Law of Cosines
10.3 Polar Coordinates
10.4 Polar Coordinates: Graphs
10.5 Polar Form of Complex Numbers
10.6 Parametric Equations
10.7 Parametric Equations: Graphs
10.8 Vectors

Introduction to Further Applications of Trigonometry
The world’s largest tree by volume, named General Sherman, stands 274.9 feet tall and resides in Northern California.1

Just how do scientists know its true height? A common way to measure the height involves determining the angle of
elevation, which is formed by the tree and the ground at a point some distance away from the base of the tree. This
method is much more practical than climbing the tree and dropping a very long tape measure.

In this chapter, we will explore applications of trigonometry that will enable us to solve many different kinds of
problems, including finding the height of a tree. We extend topics we introduced in Trigonometric Functions
(http://openstax.org/books/precalculus-2e/pages/5-introduction-to-trigonometric-functions) and investigate
applications more deeply and meaningfully.

10.1 Non-right Triangles: Law of Sines
Learning Objectives
In this section, you will:

Use the Law of Sines to solve oblique triangles.
Find the area of an oblique triangle using the sine function.
Solve applied problems using the Law of Sines.

To ensure the safety of over 5,000 U.S. aircraft flying simultaneously during peak times, air traffic controllers monitor and
communicate with them after receiving data from the robust radar beacon system. Suppose two radar stations located
20 miles apart each detect an aircraft between them. The angle of elevation measured by the first station is 35 degrees,

FURTHER APPLICATIONS OF TRIGONOMETRY10

1 Source: National Park Service. "The General Sherman Tree." http://www.nps.gov/seki/naturescience/sherman.htm. Accessed April 25, 2014.
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whereas the angle of elevation measured by the second station is 15 degrees. How can we determine the altitude of the
aircraft? We see in Figure 1 that the triangle formed by the aircraft and the two stations is not a right triangle, so we
cannot use what we know about right triangles. In this section, we will find out how to solve problems involving non-
right triangles.

Figure 1

Using the Law of Sines to Solve Oblique Triangles
In any triangle, we can draw an altitude, a perpendicular line from one vertex to the opposite side, forming two right
triangles. It would be preferable, however, to have methods that we can apply directly to non-right triangles without first
having to create right triangles.

Any triangle that is not a right triangle is an oblique triangle. Solving an oblique triangle means finding the
measurements of all three angles and all three sides. To do so, we need to start with at least three of these values,
including at least one of the sides. We will investigate three possible oblique triangle problem situations:

1. ASA (angle-side-angle) We know the measurements of two angles and the included side. See Figure 2.

Figure 2

2. AAS (angle-angle-side) We know the measurements of two angles and a side that is not between the known
angles. See Figure 3.

Figure 3

3. SSA (side-side-angle) We know the measurements of two sides and an angle that is not between the known sides.
See Figure 4.

Figure 4

Knowing how to approach each of these situations enables us to solve oblique triangles without having to drop a
perpendicular to form two right triangles. Instead, we can use the fact that the ratio of the measurement of one of the
angles to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. Let’s see
how this statement is derived by considering the triangle shown in Figure 5.
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Figure 5

Using the right triangle relationships, we know that and Solving both equations for gives two
different expressions for

We then set the expressions equal to each other.

Similarly, we can compare the other ratios.

Collectively, these relationships are called the Law of Sines.

Note the standard way of labeling triangles: angle (alpha) is opposite side angle (beta) is opposite side and
angle (gamma) is opposite side See Figure 6.

While calculating angles and sides, be sure to carry the exact values through to the final answer. Generally, final answers
are rounded to the nearest tenth, unless otherwise specified.

Figure 6

Law of Sines

Given a triangle with angles and opposite sides labeled as in Figure 6, the ratio of the measurement of an angle to the
length of its opposite side will be equal to the other two ratios of angle measure to opposite side. All proportions will
be equal. The Law of Sines is based on proportions and is presented symbolically two ways.

To solve an oblique triangle, use any pair of applicable ratios.
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EXAMPLE 1

Solving for Two Unknown Sides and Angle of an AAS Triangle
Solve the triangle shown in Figure 7 to the nearest tenth.

Figure 7

Solution
The three angles must add up to 180 degrees. From this, we can determine that

To find an unknown side, we need to know the corresponding angle and a known ratio. We know that angle and
its corresponding side We can use the following proportion from the Law of Sines to find the length of

Similarly, to solve for we set up another proportion.

Therefore, the complete set of angles and sides is

TRY IT #1 Solve the triangle shown in Figure 8 to the nearest tenth.
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Figure 8

Using The Law of Sines to Solve SSA Triangles
We can use the Law of Sines to solve any oblique triangle, but some solutions may not be straightforward. In some
cases, more than one triangle may satisfy the given criteria, which we describe as an ambiguous case. Triangles
classified as SSA, those in which we know the lengths of two sides and the measurement of the angle opposite one of
the given sides, may result in one or two solutions, or even no solution.

Possible Outcomes for SSA Triangles

Oblique triangles in the category SSA may have four different outcomes. Figure 9 illustrates the solutions with the
known sides and and known angle

Figure 9

EXAMPLE 2

Solving an Oblique SSA Triangle
Solve the triangle in Figure 10 for the missing side and find the missing angle measures to the nearest tenth.

Figure 10

Solution
Use the Law of Sines to find angle and angle and then side Solving for we have the proportion
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However, in the diagram, angle appears to be an obtuse angle and may be greater than 90°. How did we get an acute
angle, and how do we find the measurement of Let’s investigate further. Dropping a perpendicular from and
viewing the triangle from a right angle perspective, we have Figure 11. It appears that there may be a second triangle
that will fit the given criteria.

Figure 11

The angle supplementary to is approximately equal to 49.9°, which means that (Remember
that the sine function is positive in both the first and second quadrants.) Solving for we have

We can then use these measurements to solve the other triangle. Since is supplementary to the sum of and we
have

Now we need to find and

We have

Finally,

To summarize, there are two triangles with an angle of 35°, an adjacent side of 8, and an opposite side of 6, as shown in
Figure 12.
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Figure 12

However, we were looking for the values for the triangle with an obtuse angle We can see them in the first triangle (a)
in Figure 12.

TRY IT #2 Given and find the missing side and angles. If there is more than one
possible solution, show both.

EXAMPLE 3

Solving for the Unknown Sides and Angles of a SSA Triangle
In the triangle shown in Figure 13, solve for the unknown side and angles. Round your answers to the nearest tenth.

Figure 13

Solution
In choosing the pair of ratios from the Law of Sines to use, look at the information given. In this case, we know the angle

and its corresponding side and we know side We will use this proportion to solve for

To find apply the inverse sine function. The inverse sine will produce a single result, but keep in mind that there may
be two values for It is important to verify the result, as there may be two viable solutions, only one solution (the usual
case), or no solutions.

In this case, if we subtract from 180°, we find that there may be a second possible solution. Thus,
To check the solution, subtract both angles, 131.7° and 85°, from 180°. This gives

which is impossible, and so
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To find the remaining missing values, we calculate Now, only side is needed. Use the
Law of Sines to solve for by one of the proportions.

The complete set of solutions for the given triangle is

TRY IT #3 Given find the missing side and angles. If there is more than one
possible solution, show both. Round your answers to the nearest tenth.

EXAMPLE 4

Finding the Triangles That Meet the Given Criteria
Find all possible triangles if one side has length 4 opposite an angle of 50°, and a second side has length 10.

Solution
Using the given information, we can solve for the angle opposite the side of length 10. See Figure 14.

Figure 14

We can stop here without finding the value of Because the range of the sine function is it is impossible for the
sine value to be 1.915. In fact, inputting in a graphing calculator generates an ERROR DOMAIN. Therefore,
no triangles can be drawn with the provided dimensions.

TRY IT #4 Determine the number of triangles possible given

Finding the Area of an Oblique Triangle Using the Sine Function
Now that we can solve a triangle for missing values, we can use some of those values and the sine function to find the
area of an oblique triangle. Recall that the area formula for a triangle is given as where is base and is
height. For oblique triangles, we must find before we can use the area formula. Observing the two triangles in Figure
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15, one acute and one obtuse, we can drop a perpendicular to represent the height and then apply the trigonometric
property to write an equation for area in oblique triangles. In the acute triangle, we have

or However, in the obtuse triangle, we drop the perpendicular outside the triangle and extend the base to
form a right triangle. The angle used in calculation is or

Figure 15

Thus,

Similarly,

Area of an Oblique Triangle

The formula for the area of an oblique triangle is given by

This is equivalent to one-half of the product of two sides and the sine of their included angle.

EXAMPLE 5

Finding the Area of an Oblique Triangle
Find the area of a triangle with sides and angle Round the area to the nearest integer.

Solution
Using the formula, we have

TRY IT #5 Find the area of the triangle given Round the area to the nearest
tenth.

Solving Applied Problems Using the Law of Sines
The more we study trigonometric applications, the more we discover that the applications are countless. Some are flat,
diagram-type situations, but many applications in calculus, engineering, and physics involve three dimensions and
motion.
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EXAMPLE 6

Finding an Altitude
Find the altitude of the aircraft in the problem introduced at the beginning of this section, shown in Figure 16. Round the
altitude to the nearest tenth of a mile.

Figure 16

Solution
To find the elevation of the aircraft, we first find the distance from one station to the aircraft, such as the side and then
use right triangle relationships to find the height of the aircraft,

Because the angles in the triangle add up to 180 degrees, the unknown angle must be 180°−15°−35°=130°. This angle is
opposite the side of length 20, allowing us to set up a Law of Sines relationship.

The distance from one station to the aircraft is about 14.98 miles.

Now that we know we can use right triangle relationships to solve for

The aircraft is at an altitude of approximately 3.9 miles.

TRY IT #6 The diagram shown in Figure 17 represents the height of a blimp flying over a football stadium.
Find the height of the blimp if the angle of elevation at the southern end zone, point A, is 70°, the
angle of elevation from the northern end zone, point is 62°, and the distance between the
viewing points of the two end zones is 145 yards.
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Figure 17

MEDIA

Access these online resources for additional instruction and practice with trigonometric applications.

Law of Sines: The Basics (http://openstax.org/l/sinesbasic)
Law of Sines: The Ambiguous Case (http://openstax.org/l/sinesambiguous)

10.1 SECTION EXERCISES
Verbal

1. Describe the altitude of a
triangle.

2. Compare right triangles and
oblique triangles.

3. When can you use the Law
of Sines to find a missing
angle?

4. In the Law of Sines, what is
the relationship between
the angle in the numerator
and the side in the
denominator?

5. What type of triangle results
in an ambiguous case?

Algebraic

For the following exercises, assume is opposite side is opposite side and is opposite side Solve each triangle,
if possible. Round each answer to the nearest tenth.

6. 7. 8.

9. 10.
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For the following exercises, use the Law of Sines to solve for the missing side for each oblique triangle. Round each
answer to the nearest hundredth. Assume that angle is opposite side angle is opposite side and angle is
opposite side

11. Find side when 12. Find side when 13. Find side when

For the following exercises, assume is opposite side is opposite side and is opposite side Determine whether
there is no triangle, one triangle, or two triangles. Then solve each triangle, if possible. Round each answer to the
nearest tenth.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23.

For the following exercises, use the Law of Sines to solve, if possible, the missing side or angle for each triangle or
triangles in the ambiguous case. Round each answer to the nearest tenth.

24. Find angle when 25. Find angle when 26. Find angle when

For the following exercises, find the area of the triangle with the given measurements. Round each answer to the
nearest tenth.

27. 28. 29.

30.

Graphical

For the following exercises, find the length of side Round to the nearest tenth.

31. 32. 33.
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34. 35. 36.

For the following exercises, find the measure of angle if possible. Round to the nearest tenth.

37. 38. 39.

40. 41. Notice that is an obtuse
angle.

42.

For the following exercise, solve the triangle. Round each answer to the nearest tenth.

43. 44. For the following exercises, find
the area of each triangle. Round
each answer to the nearest tenth.

45.
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46. 47. 48.

49.

Extensions

50. Find the radius of the circle
in Figure 18. Round to the
nearest tenth.

Figure 18

51. Find the diameter of the
circle in Figure 19. Round
to the nearest tenth.

Figure 19

52. Find in Figure 20.
Round to the nearest tenth.

Figure 20

53. Find in Figure 21. Round to the
nearest tenth.

Figure 21

54. Solve both triangles in Figure 22.
Round each answer to the nearest
tenth.

Figure 22

55. Find in the
parallelogram shown in
Figure 23.

Figure 23
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56. Solve the triangle in Figure 24. (Hint:
Draw a perpendicular from to

Round each answer to the
nearest tenth.

Figure 24

57. Solve the triangle in Figure
25. (Hint: Draw a
perpendicular from to

Round each answer
to the nearest tenth.

Figure 25

58. In Figure 26, is not a
parallelogram. is obtuse. Solve
both triangles. Round each answer
to the nearest tenth.

Figure 26

Real-World Applications

59. A pole leans away from the sun at an angle of
to the vertical, as shown in Figure 27. When the
elevation of the sun is the pole casts a
shadow 42 feet long on the level ground. How
long is the pole? Round the answer to the nearest
tenth.

Figure 27

60. To determine how far a boat is from shore, two
radar stations 500 feet apart find the angles out to
the boat, as shown in Figure 28. Determine the
distance of the boat from station and the
distance of the boat from shore. Round your
answers to the nearest whole foot.

Figure 28
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61. Figure 29 shows a satellite orbiting Earth. The
satellite passes directly over two tracking stations

and which are 69 miles apart. When the
satellite is on one side of the two stations, the
angles of elevation at and are measured to be

and respectively. How far is the
satellite from station and how high is the
satellite above the ground? Round answers to the
nearest whole mile.

Figure 29

62. A communications tower is located at the top of a
steep hill, as shown in Figure 30. The angle of
inclination of the hill is A guy wire is to be
attached to the top of the tower and to the
ground, 165 meters downhill from the base of the
tower. The angle formed by the guy wire and the
hill is Find the length of the cable required for
the guy wire to the nearest whole meter.

Figure 30

63. The roof of a house is at a angle. An 8-foot solar
panel is to be mounted on the roof and should be
angled relative to the horizontal for optimal
results. (See Figure 31). How long does the vertical
support holding up the back of the panel need to be?
Round to the nearest tenth.

Figure 31
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64. Similar to an angle of elevation, an angle of
depression is the acute angle formed by a
horizontal line and an observer’s line of sight to
an object below the horizontal. A pilot is flying
over a straight highway. He determines the angles
of depression to two mileposts, 6.6 km apart, to
be and as shown in Figure 32. Find the
distance of the plane from point to the nearest
tenth of a kilometer.

Figure 32

65. A pilot is flying over a straight highway. He
determines the angles of depression to two
mileposts, 4.3 km apart, to be 32° and 56°, as
shown in Figure 33. Find the distance of the plane
from point to the nearest tenth of a kilometer.

Figure 33

66. In order to estimate the height of a building, two
students stand at a certain distance from the
building at street level. From this point, they find
the angle of elevation from the street to the top of
the building to be 39°. They then move 300 feet
closer to the building and find the angle of
elevation to be 50°. Assuming that the street is
level, estimate the height of the building to the
nearest foot.

67. In order to estimate the
height of a building, two
students stand at a certain
distance from the building
at street level. From this
point, they find the angle
of elevation from the street
to the top of the building
to be 35°. They then move
250 feet closer to the
building and find the angle
of elevation to be 53°.
Assuming that the street is
level, estimate the height
of the building to the
nearest foot.

68. Points and are on
opposite sides of a lake.
Point is 97 meters from

The measure of angle
is determined to be

101°, and the measure of
angle is determined
to be 53°. What is the
distance from to
rounded to the nearest
whole meter?

69. A man and a woman
standing miles apart
spot a hot air balloon at
the same time. If the angle
of elevation from the man
to the balloon is 27°, and
the angle of elevation from
the woman to the balloon
is 41°, find the altitude of
the balloon to the nearest
foot.

70. Two search teams spot a
stranded climber on a
mountain. The first search
team is 0.5 miles from the
second search team, and
both teams are at an
altitude of 1 mile. The
angle of elevation from the
first search team to the
stranded climber is 15°.
The angle of elevation from
the second search team to
the climber is 22°. What is
the altitude of the climber?
Round to the nearest tenth
of a mile.
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71. A street light is mounted
on a pole. A 6-foot-tall man
is standing on the street a
short distance from the
pole, casting a shadow. The
angle of elevation from the
tip of the man’s shadow to
the top of his head of 28°.
A 6-foot-tall woman is
standing on the same
street on the opposite side
of the pole from the man.
The angle of elevation from
the tip of her shadow to
the top of her head is 28°.
If the man and woman are
20 feet apart, how far is the
street light from the tip of
the shadow of each
person? Round the
distance to the nearest
tenth of a foot.

72. Three cities, and
are located so that city is
due east of city If city
is located 35° west of north
from city and is 100 miles
from city and 70 miles
from city how far is city

from city Round the
distance to the nearest
tenth of a mile.

73. Two streets meet at an 80° angle. At the corner, a
park is being built in the shape of a triangle. Find
the area of the park if, along one road, the park
measures 180 feet, and along the other road, the
park measures 215 feet.

74. Brian’s house is on a corner lot. Find the area of the
front yard if the edges measure 40 and 56 feet, as
shown in Figure 34.

Figure 34

75. The Bermuda triangle is a
region of the Atlantic
Ocean that connects
Bermuda, Florida, and
Puerto Rico. Find the area
of the Bermuda triangle if
the distance from Florida
to Bermuda is 1030 miles,
the distance from Puerto
Rico to Bermuda is 980
miles, and the angle
created by the two
distances is 62°.
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76. A yield sign measures 30
inches on all three sides.
What is the area of the
sign?

77. Naomi bought a dining table whose
top is in the shape of a triangle. Find
the area of the table top if two of
the sides measure 4 feet and 4.5
feet, and the smaller angles
measure 32° and 42°, as shown in
Figure 35.

Figure 35

10.2 Non-right Triangles: Law of Cosines
Learning Objectives
In this section, you will:

Use the Law of Cosines to solve oblique triangles.
Solve applied problems using the Law of Cosines.
Use Heron’s formula to find the area of a triangle.

Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels another 8 miles as shown in Figure 1. How far
from port is the boat?

Figure 1

Unfortunately, while the Law of Sines enables us to address many non-right triangle cases, it does not help us with
triangles where the known angle is between two known sides, a SAS (side-angle-side) triangle, or when all three sides
are known, but no angles are known, a SSS (side-side-side) triangle. In this section, we will investigate another tool for
solving oblique triangles described by these last two cases.

Using the Law of Cosines to Solve Oblique Triangles
The tool we need to solve the problem of the boat’s distance from the port is the Law of Cosines, which defines the
relationship among angle measurements and side lengths in oblique triangles. Three formulas make up the Law of
Cosines. At first glance, the formulas may appear complicated because they include many variables. However, once the
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pattern is understood, the Law of Cosines is easier to work with than most formulas at this mathematical level.

Understanding how the Law of Cosines is derived will be helpful in using the formulas. The derivation begins with the
Generalized Pythagorean Theorem, which is an extension of the Pythagorean Theorem to non-right triangles. Here is
how it works: An arbitrary non-right triangle is placed in the coordinate plane with vertex at the origin, side
drawn along the x-axis, and vertex located at some point in the plane, as illustrated in Figure 2. Generally,
triangles exist anywhere in the plane, but for this explanation we will place the triangle as noted.

Figure 2

We can drop a perpendicular from to the x-axis (this is the altitude or height). Recalling the basic trigonometric
identities, we know that

In terms of and The point located at has coordinates Using the
side as one leg of a right triangle and as the second leg, we can find the length of hypotenuse using the
Pythagorean Theorem. Thus,

The formula derived is one of the three equations of the Law of Cosines. The other equations are found in a similar
fashion.

Keep in mind that it is always helpful to sketch the triangle when solving for angles or sides. In a real-world scenario, try
to draw a diagram of the situation. As more information emerges, the diagram may have to be altered. Make those
alterations to the diagram and, in the end, the problem will be easier to solve.

Law of Cosines

The Law of Cosines states that the square of any side of a triangle is equal to the sum of the squares of the other two
sides minus twice the product of the other two sides and the cosine of the included angle. For triangles labeled as in
Figure 3, with angles and and opposite corresponding sides and respectively, the Law of Cosines is
given as three equations.
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...

Figure 3

To solve for a missing side measurement, the corresponding opposite angle measure is needed.

When solving for an angle, the corresponding opposite side measure is needed. We can use another version of the
Law of Cosines to solve for an angle.

HOW TO

Given two sides and the angle between them (SAS), find the measures of the remaining side and angles of a
triangle.

1. Sketch the triangle. Identify the measures of the known sides and angles. Use variables to represent the
measures of the unknown sides and angles.

2. Apply the Law of Cosines to find the length of the unknown side or angle.
3. Apply the Law of Sines or Cosines to find the measure of a second angle.
4. Compute the measure of the remaining angle.

EXAMPLE 1

Finding the Unknown Side and Angles of a SAS Triangle
Find the unknown side and angles of the triangle in Figure 4.

Figure 4

Solution
First, make note of what is given: two sides and the angle between them. This arrangement is classified as SAS and
supplies the data needed to apply the Law of Cosines.
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Each one of the three laws of cosines begins with the square of an unknown side opposite a known angle. For this
example, the first side to solve for is side as we know the measurement of the opposite angle

Because we are solving for a length, we use only the positive square root. Now that we know the length we can use
the Law of Sines to fill in the remaining angles of the triangle. Solving for angle we have

The other possibility for would be In the original diagram, is adjacent to the longest side,
so is an acute angle and, therefore, does not make sense. Notice that if we choose to apply the Law of Cosines,
we arrive at a unique answer. We do not have to consider the other possibilities, as cosine is unique for angles between

and Proceeding with we can then find the third angle of the triangle.

The complete set of angles and sides is

TRY IT #1 Find the missing side and angles of the given triangle:

EXAMPLE 2

Solving for an Angle of a SSS Triangle
Find the angle for the given triangle if side side and side

Solution
For this example, we have no angles. We can solve for any angle using the Law of Cosines. To solve for angle we have
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See Figure 5.

Figure 5

Analysis
Because the inverse cosine can return any angle between 0 and 180 degrees, there will not be any ambiguous cases
using this method.

TRY IT #2 Given and find the missing angles.

Solving Applied Problems Using the Law of Cosines
Just as the Law of Sines provided the appropriate equations to solve a number of applications, the Law of Cosines is
applicable to situations in which the given data fits the cosine models. We may see these in the fields of navigation,
surveying, astronomy, and geometry, just to name a few.

EXAMPLE 3

Using the Law of Cosines to Solve a Communication Problem
On many cell phones with GPS, an approximate location can be given before the GPS signal is received. This is
accomplished through a process called triangulation, which works by using the distances from two known points.
Suppose there are two cell phone towers within range of a cell phone. The two towers are located 6000 feet apart along
a straight highway, running east to west, and the cell phone is north of the highway. Based on the signal delay, it can be
determined that the signal is 5,050 feet from the first tower and 2,420 feet from the second tower. Determine the
position of the cell phone north and east of the first tower, and determine how far it is from the highway.

Solution
For simplicity, we start by drawing a diagram similar to Figure 6 and labeling our given information.
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Figure 6

Using the Law of Cosines, we can solve for the angle Remember that the Law of Cosines uses the square of one side to
find the cosine of the opposite angle. For this example, let and Thus, corresponds to
the opposite side

To answer the questions about the phone’s position north and east of the tower, and the distance to the highway, drop a
perpendicular from the position of the cell phone, as in Figure 7. This forms two right triangles, although we only need
the right triangle that includes the first tower for this problem.

Figure 7

Using the angle and the basic trigonometric identities, we can find the solutions. Thus

The cell phone is approximately 4,638 feet east and 1998 feet north of the first tower, and 1998 feet from the highway.

EXAMPLE 4

Calculating Distance Traveled Using a SAS Triangle
Returning to our problem at the beginning of this section, suppose a boat leaves port, travels 10 miles, turns 20 degrees,
and travels another 8 miles. How far from port is the boat? The diagram is repeated here in Figure 8.
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Figure 8

Solution
The boat turned 20 degrees, so the obtuse angle of the non-right triangle is the supplemental angle,
With this, we can utilize the Law of Cosines to find the missing side of the obtuse triangle—the distance of the boat to
the port.

The boat is about 17.7 miles from port.

Using Heron’s Formula to Find the Area of a Triangle
We already learned how to find the area of an oblique triangle when we know two sides and an angle. We also know the
formula to find the area of a triangle using the base and the height. When we know the three sides, however, we can use
Heron’s formula instead of finding the height. Heron of Alexandria was a geometer who lived during the first century
A.D. He discovered a formula for finding the area of oblique triangles when three sides are known.

Heron’s Formula

Heron’s formula finds the area of oblique triangles in which sides and are known.

where is one half of the perimeter of the triangle, sometimes called the semi-perimeter.

EXAMPLE 5

Using Heron’s Formula to Find the Area of a Given Triangle
Find the area of the triangle in Figure 9 using Heron’s formula.
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Figure 9

Solution
First, we calculate

Then we apply the formula.

The area is approximately 29.4 square units.

TRY IT #3 Use Heron’s formula to find the area of a triangle with sides of lengths
and

EXAMPLE 6

Applying Heron’s Formula to a Real-World Problem
A Chicago city developer wants to construct a building consisting of artist’s lofts on a triangular lot bordered by Rush
Street, Wabash Avenue, and Pearson Street. The frontage along Rush Street is approximately 62.4 meters, along Wabash
Avenue it is approximately 43.5 meters, and along Pearson Street it is approximately 34.1 meters. How many square
meters are available to the developer? See Figure 10 for a view of the city property.

Figure 10
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Solution
Find the measurement for which is one-half of the perimeter.

Apply Heron’s formula.

The developer has about 711.4 square meters.

TRY IT #4 Find the area of a triangle given and

MEDIA

Access these online resources for additional instruction and practice with the Law of Cosines.

Law of Cosines (http://openstax.org/l/lawcosines)
Law of Cosines: Applications (http://openstax.org/l/cosineapp)
Law of Cosines: Applications 2 (http://openstax.org/l/cosineapp2)

10.2 SECTION EXERCISES
Verbal

1. If you are looking for a
missing side of a triangle,
what do you need to know
when using the Law of
Cosines?

2. If you are looking for a
missing angle of a triangle,
what do you need to know
when using the Law of
Cosines?

3. Explain what represents in
Heron’s formula.

4. Explain the relationship
between the Pythagorean
Theorem and the Law of
Cosines.

5. When must you use the Law
of Cosines instead of the
Pythagorean Theorem?

Algebraic

For the following exercises, assume is opposite side is opposite side and is opposite side If possible, solve
each triangle for the unknown side. Round to the nearest tenth.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15.
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For the following exercises, use the Law of Cosines to solve for the missing angle of the oblique triangle. Round to the
nearest tenth.

16. find
angle

17.
find angle

18. find
angle

19.
find angle

20.
find angle

For the following exercises, solve the triangle. Round to the nearest tenth.

21. 22. 23.

24. 25. 26.

For the following exercises, use Heron’s formula to find the area of the triangle. Round to the nearest hundredth.

27. Find the area of a triangle
with sides of length 18 in,
21 in, and 32 in. Round to
the nearest tenth.

28. Find the area of a triangle
with sides of length 20 cm,
26 cm, and 37 cm. Round to
the nearest tenth.

29.

30. 31.

Graphical

For the following exercises, find the length of side Round to the nearest tenth.

32. 33. 34.

35. 36. 37.
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For the following exercises, find the measurement of angle

38. 39. 40.

41. 42. Find the measure of each angle in
the triangle shown in Figure 11.
Round to the nearest tenth.

Figure 11

For the following exercises, solve for the unknown side. Round to the nearest tenth.

43. 44. 45.

46.
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For the following exercises, find the area of the triangle. Round to the nearest hundredth.

47. 48. 49.

50. 51.

Extensions

52. A parallelogram has sides
of length 16 units and 10
units. The shorter diagonal
is 12 units. Find the
measure of the longer
diagonal.

53. The sides of a
parallelogram are 11 feet
and 17 feet. The longer
diagonal is 22 feet. Find the
length of the shorter
diagonal.

54. The sides of a
parallelogram are 28
centimeters and 40
centimeters. The measure
of the larger angle is 100°.
Find the length of the
shorter diagonal.

55. A regular octagon is
inscribed in a circle with a
radius of 8 inches. (See
Figure 12.) Find the
perimeter of the octagon.

Figure 12

56. A regular pentagon is
inscribed in a circle of
radius 12 cm. (See Figure
13.) Find the perimeter of
the pentagon. Round to
the nearest tenth of a
centimeter.

Figure 13
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For the following exercises, suppose that represents the relationship of three sides of a
triangle and the cosine of an angle.

57. Draw the triangle. 58. Find the length of the third
side.

For the following exercises, find the area of the triangle.

59. 60. 61.

Real-World Applications

62. A surveyor has taken the
measurements shown in Figure 14.
Find the distance across the lake.
Round answers to the nearest tenth.

Figure 14

63. A satellite calculates the distances
and angle shown in Figure 15 (not
to scale). Find the distance between
the two cities. Round answers to the
nearest tenth.

Figure 15

64. An airplane flies 220 miles
with a heading of 40°, and
then flies 180 miles with a
heading of 170°. How far is
the plane from its starting
point, and at what
heading? Round answers
to the nearest tenth.
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65. A 113-foot tower is located on a hill
that is inclined 34° to the horizontal,
as shown in Figure 16. A guy-wire is
to be attached to the top of the
tower and anchored at a point 98
feet uphill from the base of the
tower. Find the length of wire
needed.

Figure 16

66. Two ships left a port at the
same time. One ship
traveled at a speed of 18
miles per hour at a
heading of 320°. The other
ship traveled at a speed of
22 miles per hour at a
heading of 194°. Find the
distance between the two
ships after 10 hours of
travel.

67. The graph in Figure 17 represents
two boats departing at the same
time from the same dock. The first
boat is traveling at 18 miles per
hour at a heading of 327° and the
second boat is traveling at 4 miles
per hour at a heading of 60°. Find
the distance between the two boats
after 2 hours.

Figure 17

68. A triangular swimming
pool measures 40 feet on
one side and 65 feet on
another side. These sides
form an angle that
measures 50°. How long is
the third side (to the
nearest tenth)?

69. A pilot flies in a straight
path for 1 hour 30 min. She
then makes a course
correction, heading 10° to
the right of her original
course, and flies 2 hours in
the new direction. If she
maintains a constant speed
of 680 miles per hour, how
far is she from her starting
position?

70. Los Angeles is 1,744 miles
from Chicago, Chicago is
714 miles from New York,
and New York is 2,451
miles from Los Angeles.
Draw a triangle connecting
these three cities, and find
the angles in the triangle.

71. Philadelphia is 140 miles
from Washington, D.C.,
Washington, D.C. is 442
miles from Boston, and
Boston is 315 miles from
Philadelphia. Draw a
triangle connecting these
three cities and find the
angles in the triangle.

72. Two planes leave the same
airport at the same time.
One flies at 20° east of
north at 500 miles per
hour. The second flies at
30° east of south at 600
miles per hour. How far
apart are the planes after 2
hours?

73. Two airplanes take off in
different directions. One
travels 300 mph due west
and the other travels 25°
north of west at 420 mph.
After 90 minutes, how far
apart are they, assuming
they are flying at the same
altitude?

74. A parallelogram has sides
of length 15.4 units and 9.8
units. Its area is 72.9
square units. Find the
measure of the longer
diagonal.

75. The four sequential sides
of a quadrilateral have
lengths 4.5 cm, 7.9 cm, 9.4
cm, and 12.9 cm. The angle
between the two smallest
sides is 117°. What is the
area of this quadrilateral?

76. The four sequential sides
of a quadrilateral have
lengths 5.7 cm, 7.2 cm, 9.4
cm, and 12.8 cm. The angle
between the two smallest
sides is 106°. What is the
area of this quadrilateral?
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77. Find the area of a
triangular piece of land
that measures 30 feet on
one side and 42 feet on
another; the included
angle measures 132°.
Round to the nearest
whole square foot.

78. Find the area of a
triangular piece of land
that measures 110 feet on
one side and 250 feet on
another; the included
angle measures 85°. Round
to the nearest whole
square foot.

10.3 Polar Coordinates
Learning Objectives
In this section, you will:

Plot points using polar coordinates.
Convert from polar coordinates to rectangular coordinates.
Convert from rectangular coordinates to polar coordinates.
Transform equations between polar and rectangular forms.
Identify and graph polar equations by converting to rectangular equations.

Over 12 kilometers from port, a sailboat encounters rough weather and is blown off course by a 16-knot wind (see Figure
1). How can the sailor indicate his location to the Coast Guard? In this section, we will investigate a method of
representing location that is different from a standard coordinate grid.

Figure 1

Plotting Points Using Polar Coordinates
When we think about plotting points in the plane, we usually think of rectangular coordinates in the Cartesian
coordinate plane. However, there are other ways of writing a coordinate pair and other types of grid systems. In this
section, we introduce to polar coordinates, which are points labeled and plotted on a polar grid. The polar grid is
represented as a series of concentric circles radiating out from the pole, or the origin of the coordinate plane.

The polar grid is scaled as the unit circle with the positive x-axis now viewed as the polar axis and the origin as the pole.
The first coordinate is the radius or length of the directed line segment from the pole. The angle measured in
radians, indicates the direction of We move counterclockwise from the polar axis by an angle of and measure a
directed line segment the length of in the direction of Even though we measure first and then the polar point is
written with the r-coordinate first. For example, to plot the point we would move units in the counterclockwise
direction and then a length of 2 from the pole. This point is plotted on the grid in Figure 2.
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Figure 2

EXAMPLE 1

Plotting a Point on the Polar Grid
Plot the point on the polar grid.

Solution
The angle is found by sweeping in a counterclockwise direction 90° from the polar axis. The point is located at a length
of 3 units from the pole in the direction, as shown in Figure 3.

Figure 3

TRY IT #1 Plot the point in the polar grid.

EXAMPLE 2

Plotting a Point in the Polar Coordinate System with a Negative Component
Plot the point on the polar grid.

Solution
We know that is located in the first quadrant. However, We can approach plotting a point with a negative in
two ways:
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1. Plot the point by moving in the counterclockwise direction and extending a directed line segment 2 units
into the first quadrant. Then retrace the directed line segment back through the pole, and continue 2 units into the
third quadrant;

2. Move in the counterclockwise direction, and draw the directed line segment from the pole 2 units in the negative
direction, into the third quadrant.

See Figure 4(a). Compare this to the graph of the polar coordinate shown in Figure 4(b).

Figure 4

TRY IT #2 Plot the points and on the same polar grid.

Converting from Polar Coordinates to Rectangular Coordinates
When given a set of polar coordinates, we may need to convert them to rectangular coordinates. To do so, we can recall
the relationships that exist among the variables and

Dropping a perpendicular from the point in the plane to the x-axis forms a right triangle, as illustrated in Figure 5. An
easy way to remember the equations above is to think of as the adjacent side over the hypotenuse and as
the opposite side over the hypotenuse.

Figure 5

Converting from Polar Coordinates to Rectangular Coordinates

To convert polar coordinates to rectangular coordinates let
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HOW TO

Given polar coordinates, convert to rectangular coordinates.

1. Given the polar coordinate write and
2. Evaluate and
3. Multiply by to find the x-coordinate of the rectangular form.
4. Multiply by to find the y-coordinate of the rectangular form.

EXAMPLE 3

Writing Polar Coordinates as Rectangular Coordinates
Write the polar coordinates as rectangular coordinates.

Solution
Use the equivalent relationships.

The rectangular coordinates are See Figure 6.

Figure 6

EXAMPLE 4

Writing Polar Coordinates as Rectangular Coordinates
Write the polar coordinates as rectangular coordinates.
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Solution
See Figure 7. Writing the polar coordinates as rectangular, we have

The rectangular coordinates are also

Figure 7

TRY IT #3 Write the polar coordinates as rectangular coordinates.

Converting from Rectangular Coordinates to Polar Coordinates
To convert rectangular coordinates to polar coordinates, we will use two other familiar relationships. With this
conversion, however, we need to be aware that a set of rectangular coordinates will yield more than one polar point.

Converting from Rectangular Coordinates to Polar Coordinates

Converting from rectangular coordinates to polar coordinates requires the use of one or more of the relationships
illustrated in Figure 8.

10.3 • Polar Coordinates 929



Figure 8

EXAMPLE 5

Writing Rectangular Coordinates as Polar Coordinates
Convert the rectangular coordinates to polar coordinates.

Solution
We see that the original point is in the first quadrant. To find use the formula This gives

To find we substitute the values for and into the formula We know that must be positive, as is
in the first quadrant. Thus

So, and giving us the polar point See Figure 9.

Figure 9

Analysis
There are other sets of polar coordinates that will be the same as our first solution. For example, the points
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and will coincide with the original solution of The point

indicates a move further counterclockwise by which is directly opposite The radius is expressed as

However, the angle is located in the third quadrant and, as is negative, we extend the directed line segment in the

opposite direction, into the first quadrant. This is the same point as The point is a move

further clockwise by from The radius, is the same.

Transforming Equations between Polar and Rectangular Forms
We can now convert coordinates between polar and rectangular form. Converting equations can be more difficult, but it
can be beneficial to be able to convert between the two forms. Since there are a number of polar equations that cannot
be expressed clearly in Cartesian form, and vice versa, we can use the same procedures we used to convert points
between the coordinate systems. We can then use a graphing calculator to graph either the rectangular form or the
polar form of the equation.

HOW TO

Given an equation in polar form, graph it using a graphing calculator.

1. Change the MODE to POL, representing polar form.
2. Press the Y= button to bring up a screen allowing the input of six equations:
3. Enter the polar equation, set equal to
4. Press GRAPH.

EXAMPLE 6

Writing a Cartesian Equation in Polar Form
Write the Cartesian equation in polar form.

Solution
The goal is to eliminate and from the equation and introduce and Ideally, we would write the equation as a
function of To obtain the polar form, we will use the relationships between and Since and

we can substitute and solve for

Thus, and should generate the same graph. See Figure 10.
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Figure 10 (a) Cartesian form (b) Polar form

To graph a circle in rectangular form, we must first solve for

Note that this is two separate functions, since a circle fails the vertical line test. Therefore, we need to enter the positive
and negative square roots into the calculator separately, as two equations in the form and

Press GRAPH.

EXAMPLE 7

Rewriting a Cartesian Equation as a Polar Equation
Rewrite the Cartesian equation as a polar equation.

Solution
This equation appears similar to the previous example, but it requires different steps to convert the equation.

We can still follow the same procedures we have already learned and make the following substitutions:

Therefore, the equations and should give us the same graph. See Figure 11.
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Figure 11 (a) Cartesian form (b) polar form

The Cartesian or rectangular equation is plotted on the rectangular grid, and the polar equation is plotted on the polar
grid. Clearly, the graphs are identical.

EXAMPLE 8

Rewriting a Cartesian Equation in Polar Form
Rewrite the Cartesian equation as a polar equation.

Solution
We will use the relationships and

TRY IT #4 Rewrite the Cartesian equation in polar form.

Identify and Graph Polar Equations by Converting to Rectangular Equations
We have learned how to convert rectangular coordinates to polar coordinates, and we have seen that the points are
indeed the same. We have also transformed polar equations to rectangular equations and vice versa. Now we will
demonstrate that their graphs, while drawn on different grids, are identical.

EXAMPLE 9

Graphing a Polar Equation by Converting to a Rectangular Equation
Covert the polar equation to a rectangular equation, and draw its corresponding graph.

Solution
The conversion is

Notice that the equation drawn on the polar grid is clearly the same as the vertical line drawn on the
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rectangular grid (see Figure 12). Just as is the standard form for a vertical line in rectangular form, is
the standard form for a vertical line in polar form.

Figure 12 (a) Polar grid (b) Rectangular coordinate system

A similar discussion would demonstrate that the graph of the function will be the horizontal line In
fact, is the standard form for a horizontal line in polar form, corresponding to the rectangular form

EXAMPLE 10

Rewriting a Polar Equation in Cartesian Form
Rewrite the polar equation as a Cartesian equation.

Solution
The goal is to eliminate and and introduce and We clear the fraction, and then use substitution. In order to
replace with and we must use the expression

The Cartesian equation is However, to graph it, especially using a graphing calculator or computer
program, we want to isolate

When our entire equation has been changed from and to and we can stop, unless asked to solve for or simplify.
See Figure 13.
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Figure 13

The “hour-glass” shape of the graph is called a hyperbola. Hyperbolas have many interesting geometric features and
applications, which we will investigate further in Analytic Geometry.

Analysis
In this example, the right side of the equation can be expanded and the equation simplified further, as shown above.
However, the equation cannot be written as a single function in Cartesian form. We may wish to write the rectangular
equation in the hyperbola’s standard form. To do this, we can start with the initial equation.

TRY IT #5 Rewrite the polar equation in Cartesian form.

EXAMPLE 11

Rewriting a Polar Equation in Cartesian Form
Rewrite the polar equation in Cartesian form.

Solution

This equation can also be written as
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MEDIA

Access these online resources for additional instruction and practice with polar coordinates.

Introduction to Polar Coordinates (http://openstax.org/l/intropolar)
Comparing Polar and Rectangular Coordinates (http://openstax.org/l/polarrect)

10.3 SECTION EXERCISES
Verbal

1. How are polar coordinates
different from rectangular
coordinates?

2. How are the polar axes
different from the x- and
y-axes of the Cartesian
plane?

3. Explain how polar
coordinates are graphed.

4. How are the points
and related?

5. Explain why the points
and are

the same.

Algebraic

For the following exercises, convert the given polar coordinates to Cartesian coordinates. Remember to consider the
quadrant in which the given point is located when determining for the point.

6. 7. 8.

9. 10.

For the following exercises, convert the given Cartesian coordinates to polar coordinates with
Remember to consider the quadrant in which the given point is located.

11. 12. 13.

14. 15.

For the following exercises, convert the given Cartesian equation to a polar equation.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.
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For the following exercises, convert the given polar equation to a Cartesian equation. Write in the standard form of a
conic if possible, and identify the conic section represented.

28. 29. 30.

31. 32. 33.

34. 35. 36.

37. 38. 39.

Graphical

For the following exercises, find the polar coordinates of the point.

40. 41. 42.

43. 44.

For the following exercises, plot the points.

45. 46. 47.

48. 49. 50.
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51. 52. 53.

54.

For the following exercises, convert the equation from rectangular to polar form and graph on the polar axis.

55. 56. 57.

58. 59. 60.

61.

For the following exercises, convert the equation from polar to rectangular form and graph on the rectangular plane.

62. 63. 64.

65. 66. 67.

68.

Technology

69. Use a graphing calculator
to find the rectangular
coordinates of
Round to the nearest
thousandth.

70. Use a graphing calculator
to find the rectangular
coordinates of
Round to the nearest
thousandth.

71. Use a graphing calculator
to find the polar
coordinates of in
degrees. Round to the
nearest thousandth.

72. Use a graphing calculator
to find the polar
coordinates of in
degrees. Round to the
nearest hundredth.

73. Use a graphing calculator
to find the polar
coordinates of in
radians. Round to the
nearest hundredth.

Extensions

74. Describe the graph of 75. Describe the graph of 76. Describe the graph of

77. Describe the graph of 78. What polar equations will
give an oblique line?

For the following exercise, graph the polar inequality.

79. 80. 81.
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82. 83. 84.

10.4 Polar Coordinates: Graphs
Learning Objectives
In this section you will:

Test polar equations for symmetry.
Graph polar equations by plotting points.

The planets move through space in elliptical, periodic orbits about the sun, as shown in Figure 1. They are in constant
motion, so fixing an exact position of any planet is valid only for a moment. In other words, we can fix only a planet’s
instantaneous position. This is one application of polar coordinates, represented as We interpret as the distance
from the sun and as the planet’s angular bearing, or its direction from a fixed point on the sun. In this section, we will
focus on the polar system and the graphs that are generated directly from polar coordinates.

Figure 1 Planets follow elliptical paths as they orbit around the Sun. (credit: modification of work by NASA/JPL-Caltech)

Testing Polar Equations for Symmetry
Just as a rectangular equation such as describes the relationship between and on a Cartesian grid, a polar
equation describes a relationship between and on a polar grid. Recall that the coordinate pair indicates that we
move counterclockwise from the polar axis (positive x-axis) by an angle of and extend a ray from the pole (origin)
units in the direction of All points that satisfy the polar equation are on the graph.

Symmetry is a property that helps us recognize and plot the graph of any equation. If an equation has a graph that is
symmetric with respect to an axis, it means that if we folded the graph in half over that axis, the portion of the graph on
one side would coincide with the portion on the other side. By performing three tests, we will see how to apply the
properties of symmetry to polar equations. Further, we will use symmetry (in addition to plotting key points, zeros, and
maximums of to determine the graph of a polar equation.

In the first test, we consider symmetry with respect to the line (y-axis). We replace with to determine
if the new equation is equivalent to the original equation. For example, suppose we are given the equation

This equation exhibits symmetry with respect to the line

In the second test, we consider symmetry with respect to the polar axis ( -axis). We replace with or
to determine equivalency between the tested equation and the original. For example, suppose we are given

the equation
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The graph of this equation exhibits symmetry with respect to the polar axis.

In the third test, we consider symmetry with respect to the pole (origin). We replace with to determine if the
tested equation is equivalent to the original equation. For example, suppose we are given the equation

The equation has failed the symmetry test, but that does not mean that it is not symmetric with respect to the pole.
Passing one or more of the symmetry tests verifies that symmetry will be exhibited in a graph. However, failing the
symmetry tests does not necessarily indicate that a graph will not be symmetric about the line the polar axis, or
the pole. In these instances, we can confirm that symmetry exists by plotting reflecting points across the apparent axis
of symmetry or the pole. Testing for symmetry is a technique that simplifies the graphing of polar equations, but its
application is not perfect.

Symmetry Tests

A polar equation describes a curve on the polar grid. The graph of a polar equation can be evaluated for three types
of symmetry, as shown in Figure 2.

Figure 2 (a) A graph is symmetric with respect to the line (y-axis) if replacing with yields an
equivalent equation. (b) A graph is symmetric with respect to the polar axis (x-axis) if replacing with or

yields an equivalent equation. (c) A graph is symmetric with respect to the pole (origin) if replacing
with yields an equivalent equation.

HOW TO

Given a polar equation, test for symmetry.

1. Substitute the appropriate combination of components for for symmetry; for polar
axis symmetry; and for symmetry with respect to the pole.

2. If the resulting equations are equivalent in one or more of the tests, the graph produces the expected symmetry.

EXAMPLE 1

Testing a Polar Equation for Symmetry
Test the equation for symmetry.

940 10 • Further Applications of Trigonometry

Access for free at openstax.org



Solution
Test for each of the three types of symmetry.

1) Replacing with yields the same result. Thus, the graph
is symmetric with respect to the line

2) Replacing with does not yield the same equation. Therefore,
the graph fails the test and may or may not be symmetric with respect

to the polar axis.

3) Replacing with changes the equation and fails the test. The
graph may or may not be symmetric with respect to the pole.

Table 1

Analysis
Using a graphing calculator, we can see that the equation is a circle centered at with radius and is
indeed symmetric to the line We can also see that the graph is not symmetric with the polar axis or the pole. See
Figure 3.

Figure 3

TRY IT #1 Test the equation for symmetry:

Graphing Polar Equations by Plotting Points
To graph in the rectangular coordinate system we construct a table of and values. To graph in the polar coordinate
system we construct a table of and values. We enter values of into a polar equation and calculate However, using
the properties of symmetry and finding key values of and means fewer calculations will be needed.

Finding Zeros and Maxima
To find the zeros of a polar equation, we solve for the values of that result in Recall that, to find the zeros of
polynomial functions, we set the equation equal to zero and then solve for We use the same process for polar
equations. Set and solve for

For many of the forms we will encounter, the maximum value of a polar equation is found by substituting those values
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of into the equation that result in the maximum value of the trigonometric functions. Consider the
maximum distance between the curve and the pole is 5 units. The maximum value of the cosine function is 1 when

so our polar equation is and the value will yield the maximum

Similarly, the maximum value of the sine function is 1 when and if our polar equation is the value
will yield the maximum We may find additional information by calculating values of when These

points would be polar axis intercepts, which may be helpful in drawing the graph and identifying the curve of a polar
equation.

EXAMPLE 2

Finding Zeros and Maximum Values for a Polar Equation
Using the equation in Example 1, find the zeros and maximum and, if necessary, the polar axis intercepts of

Solution
To find the zeros, set equal to zero and solve for

Substitute any one of the values into the equation. We will use

The points and are the zeros of the equation. They all coincide, so only one point is visible on the graph.
This point is also the only polar axis intercept.

To find the maximum value of the equation, look at the maximum value of the trigonometric function which
occurs when resulting in Substitute for

Analysis
The point will be the maximum value on the graph. Let’s plot a few more points to verify the graph of a circle. See
Table 2 and Figure 4.

0

Table 2
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Table 2

Figure 4

TRY IT #2 Without converting to Cartesian coordinates, test the given equation for symmetry and find the
zeros and maximum values of

Investigating Circles
Now we have seen the equation of a circle in the polar coordinate system. In the last two examples, the same equation
was used to illustrate the properties of symmetry and demonstrate how to find the zeros, maximum values, and plotted
points that produced the graphs. However, the circle is only one of many shapes in the set of polar curves.

There are five classic polar curves: cardioids, limaҫons, lemniscates, rose curves, and Archimedes’ spirals. We will
briefly touch on the polar formulas for the circle before moving on to the classic curves and their variations.

Formulas for the Equation of a Circle

Some of the formulas that produce the graph of a circle in polar coordinates are given by and
where is the diameter of the circle or the distance from the pole to the farthest point on the circumference. The

radius is or one-half the diameter. For   the center is For the center is

Figure 5 shows the graphs of these four circles.

Figure 5
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EXAMPLE 3

Sketching the Graph of a Polar Equation for a Circle
Sketch the graph of

Solution
First, testing the equation for symmetry, we find that the graph is symmetric about the polar axis. Next, we find the zeros
and maximum for First, set and solve for . Thus, a zero occurs at A key point to plot

is

To find the maximum value of note that the maximum value of the cosine function is 1 when Substitute
into the equation:

The maximum value of the equation is 4. A key point to plot is

As is symmetric with respect to the polar axis, we only need to calculate r-values for over the interval
Points in the upper quadrant can then be reflected to the lower quadrant. Make a table of values similar to Table 3. The
graph is shown in Figure 6.

0

4 3.46 2.83 2 0 −2 −2.83 −3.46 −4

Table 3

Figure 6

Investigating Cardioids
While translating from polar coordinates to Cartesian coordinates may seem simpler in some instances, graphing the
classic curves is actually less complicated in the polar system. The next curve is called a cardioid, as it resembles a heart.
This shape is often included with the family of curves called limaçons, but here we will discuss the cardioid on its own.

Formulas for a Cardioid

The formulas that produce the graphs of a cardioid are given by and where
and The cardioid graph passes through the pole, as we can see in Figure 7.
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Figure 7

HOW TO

Given the polar equation of a cardioid, sketch its graph.

1. Check equation for the three types of symmetry.
2. Find the zeros. Set
3. Find the maximum value of the equation according to the maximum value of the trigonometric expression.
4. Make a table of values for and
5. Plot the points and sketch the graph.

EXAMPLE 4

Sketching the Graph of a Cardioid
Sketch the graph of

Solution
First, testing the equation for symmetry, we find that the graph of this equation will be symmetric about the polar axis.
Next, we find the zeros and maximums. Setting we have The zero of the equation is located at
The graph passes through this point.

The maximum value of occurs when is a maximum, which is when or when
Substitute into the equation, and solve for

The point is the maximum value on the graph.

We found that the polar equation is symmetric with respect to the polar axis, but as it extends to all four quadrants, we
need to plot values over the interval The upper portion of the graph is then reflected over the polar axis. Next, we
make a table of values, as in Table 4, and then we plot the points and draw the graph. See Figure 8.

4 3.41 2 1 0

Table 4
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Figure 8

Investigating Limaçons
The word limaçon is Old French for “snail,” a name that describes the shape of the graph. As mentioned earlier, the
cardioid is a member of the limaçon family, and we can see the similarities in the graphs. The other images in this
category include the one-loop limaçon and the two-loop (or inner-loop) limaçon. One-loop limaçons are sometimes
referred to as dimpled limaçons when and convex limaçons when

Formulas for One-Loop Limaçons

The formulas that produce the graph of a dimpled one-loop limaçon are given by and
where All four graphs are shown in Figure 9.

Figure 9 Dimpled limaçons

HOW TO

Given a polar equation for a one-loop limaçon, sketch the graph.

1. Test the equation for symmetry. Remember that failing a symmetry test does not mean that the shape will not
exhibit symmetry. Often the symmetry may reveal itself when the points are plotted.

2. Find the zeros.
3. Find the maximum values according to the trigonometric expression.
4. Make a table.
5. Plot the points and sketch the graph.
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EXAMPLE 5

Sketching the Graph of a One-Loop Limaçon
Graph the equation

Solution
First, testing the equation for symmetry, we find that it fails all three symmetry tests, meaning that the graph may or
may not exhibit symmetry, so we cannot use the symmetry to help us graph it. However, this equation has a graph that
clearly displays symmetry with respect to the line yet it fails all the three symmetry tests. A graphing calculator
will immediately illustrate the graph’s reflective quality.

Next, we find the zeros and maximum, and plot the reflecting points to verify any symmetry. Setting results in
being undefined. What does this mean? How could be undefined? The angle is undefined for any value of
Therefore, is undefined because there is no value of for which Consequently, the graph does not pass
through the pole. Perhaps the graph does cross the polar axis, but not at the pole. We can investigate other intercepts
by calculating when

So, there is at least one polar axis intercept at

Next, as the maximum value of the sine function is 1 when we will substitute into the equation and solve
for Thus,

Make a table of the coordinates similar to Table 5.

4 2.5 1.4 1 1.4 2.5 4 5.5 6.6 7 6.6 5.5 4

Table 5

The graph is shown in Figure 10.

Figure 10 One-loop limaçon

Analysis
This is an example of a curve for which making a table of values is critical to producing an accurate graph. The symmetry
tests fail; the zero is undefined. While it may be apparent that an equation involving is likely symmetric with
respect to the line evaluating more points helps to verify that the graph is correct.
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TRY IT #3 Sketch the graph of

Another type of limaçon, the inner-loop limaçon, is named for the loop formed inside the general limaçon shape. It was
discovered by the German artist Albrecht Dürer(1471-1528), who revealed a method for drawing the inner-loop limaçon
in his 1525 book Underweysung der Messing. A century later, the father of mathematician Blaise Pascal, Étienne
Pascal(1588-1651), rediscovered it.

Formulas for Inner-Loop Limaçons

The formulas that generate the inner-loop limaçons are given by and where
and The graph of the inner-loop limaçon passes through the pole twice: once for the outer loop, and

once for the inner loop. See Figure 11 for the graphs.

Figure 11

EXAMPLE 6

Sketching the Graph of an Inner-Loop Limaçon
Sketch the graph of

Solution
Testing for symmetry, we find that the graph of the equation is symmetric about the polar axis. Next, finding the zeros
reveals that when The maximum is found when or when Thus, the maximum is
found at the point (7, 0).

Even though we have found symmetry, the zero, and the maximum, plotting more points will help to define the shape,
and then a pattern will emerge.

See Table 6.

7 6.3 4.5 2 −0.5 −2.3 −3 −2.3 −0.5 2 4.5 6.3 7

Table 6

As expected, the values begin to repeat after The graph is shown in Figure 12.
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Figure 12 Inner-loop limaçon

Investigating Lemniscates
The lemniscate is a polar curve resembling the infinity symbol ∞ or a figure 8. Centered at the pole, a lemniscate is

symmetrical by definition.

Formulas for Lemniscates

The formulas that generate the graph of a lemniscate are given by and where
The formula is symmetric with respect to the pole. The formula is symmetric with
respect to the pole, the line and the polar axis. See Figure 13 for the graphs.

Figure 13

EXAMPLE 7

Sketching the Graph of a Lemniscate
Sketch the graph of

Solution
The equation exhibits symmetry with respect to the line the polar axis, and the pole.

Let’s find the zeros. It should be routine by now, but we will approach this equation a little differently by making the
substitution

10.4 • Polar Coordinates: Graphs 949



So, the point is a zero of the equation.

Now let’s find the maximum value. Since the maximum of when the maximum when
Thus,

We have a maximum at (2, 0). Since this graph is symmetric with respect to the pole, the line and the polar axis,
we only need to plot points in the first quadrant.

Make a table similar to Table 7.

0

0

Table 7

Plot the points on the graph, such as the one shown in Figure 14.

Figure 14 Lemniscate

Analysis
Making a substitution such as is a common practice in mathematics because it can make calculations simpler.
However, we must not forget to replace the substitution term with the original term at the end, and then solve for the
unknown.

Some of the points on this graph may not show up using the Trace function on the TI-84 graphing calculator, and the
calculator table may show an error for these same points of This is because there are no real square roots for these
values of In other words, the corresponding r-values of are complex numbers because there is a negative
number under the radical.

Investigating Rose Curves
The next type of polar equation produces a petal-like shape called a rose curve. Although the graphs look complex, a
simple polar equation generates the pattern.
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Rose Curves

The formulas that generate the graph of a rose curve are given by and where If is
even, the curve has petals. If is odd, the curve has petals. See Figure 15.

Figure 15

EXAMPLE 8

Sketching the Graph of a Rose Curve (n Even)
Sketch the graph of

Solution
Testing for symmetry, we find again that the symmetry tests do not tell the whole story. The graph is not only symmetric
with respect to the polar axis, but also with respect to the line and the pole.

Now we will find the zeros. First make the substitution

The zero is The point is on the curve.

Next, we find the maximum We know that the maximum value of when Thus,

The point is on the curve.

The graph of the rose curve has unique properties, which are revealed in Table 8.

0

2 0 −2 0 2 0 −2

Table 8
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As when it makes sense to divide values in the table by units. A definite pattern emerges. Look at the
range of r-values: 2, 0, −2, 0, 2, 0, −2, and so on. This represents the development of the curve one petal at a time.
Starting at each petal extends out a distance of and then turns back to zero times for a total of eight
petals. See the graph in Figure 16.

Figure 16 Rose curve, even

Analysis
When these curves are drawn, it is best to plot the points in order, as in the Table 8. This allows us to see how the graph
hits a maximum (the tip of a petal), loops back crossing the pole, hits the opposite maximum, and loops back to the pole.
The action is continuous until all the petals are drawn.

TRY IT #4 Sketch the graph of

EXAMPLE 9

Sketching the Graph of a Rose Curve (n Odd)
Sketch the graph of

Solution
The graph of the equation shows symmetry with respect to the line Next, find the zeros and maximum. We will
want to make the substitution

The maximum value is calculated at the angle where is a maximum. Therefore,

Thus, the maximum value of the polar equation is 2. This is the length of each petal. As the curve for odd yields the
same number of petals as there will be five petals on the graph. See Figure 17.

952 10 • Further Applications of Trigonometry

Access for free at openstax.org



...

Figure 17 Rose curve, odd

Create a table of values similar to Table 9.

0

0 1 −1.73 2 −1.73 1 0

Table 9

TRY IT #5 Sketch the graph of

Investigating the Archimedes’ Spiral
The final polar equation we will discuss is the Archimedes’ spiral, named for its discoverer, the Greek mathematician
Archimedes (c. 287 BCE-c. 212 BCE), who is credited with numerous discoveries in the fields of geometry and mechanics.

Archimedes’ Spiral

The formula that generates the graph of the Archimedes’ spiral is given by for As increases,
increases at a constant rate in an ever-widening, never-ending, spiraling path. See Figure 18.

Figure 18

HOW TO

Given an Archimedes’ spiral over sketch the graph.
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1. Make a table of values for and over the given domain.
2. Plot the points and sketch the graph.

EXAMPLE 10

Sketching the Graph of an Archimedes’ Spiral
Sketch the graph of over

Solution
As is equal to the plot of the Archimedes’ spiral begins at the pole at the point (0, 0). While the graph hints of
symmetry, there is no formal symmetry with regard to passing the symmetry tests. Further, there is no maximum value,
unless the domain is restricted.

Create a table such as Table 10.

0.785 1.57 3.14 4.71 5.50 6.28

Table 10

Notice that the r-values are just the decimal form of the angle measured in radians. We can see them on a graph in
Figure 19.

Figure 19 Archimedes’ spiral

Analysis

The domain of this polar curve is In general, however, the domain of this function is ∞ ∞ Graphing the

equation of the Archimedes’ spiral is rather simple, although the image makes it seem like it would be complex.

TRY IT #6 Sketch the graph of over the interval

Summary of Curves
We have explored a number of seemingly complex polar curves in this section. Figure 20 and Figure 21 summarize the
graphs and equations for each of these curves.
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Figure 20

Figure 21

MEDIA

Access these online resources for additional instruction and practice with graphs of polar coordinates.

Graphing Polar Equations Part 1 (http://openstax.org/l/polargraph1)
Graphing Polar Equations Part 2 (http://openstax.org/l/polargraph2)
Animation: The Graphs of Polar Equations (http://openstax.org/l/polaranim)
Graphing Polar Equations on the TI-84 (http://openstax.org/l/polarTI84)

10.4 SECTION EXERCISES
Verbal

1. Describe the three types of
symmetry in polar graphs,
and compare them to the
symmetry of the Cartesian
plane.

2. Which of the three types of
symmetries for polar graphs
correspond to the
symmetries with respect to
the x-axis, y-axis, and
origin?

3. What are the steps to follow
when graphing polar
equations?

4. Describe the shapes of the
graphs of cardioids,
limaçons, and lemniscates.

5. What part of the equation
determines the shape of the
graph of a polar equation?
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Graphical

For the following exercises, test the equation for symmetry.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15.

For the following exercises, graph the polar equation. Identify the name of the shape.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.

28. 29. 30.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41. 42.

43.

Technology

For the following exercises, use a graphing calculator to sketch the graph of the polar equation.

44. 45. 46. a cissoid

47. , a
hippopede

48. 49.

50. 51. 52.

53.
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For the following exercises, use a graphing utility to graph each pair of polar equations on a domain of and then
explain the differences shown in the graphs.

54. 55. 56.

57. 58. 59. On a graphing utility,
graph on ,

, , , , , and
, Describe the

effect of increasing the
width of the domain.

60. On a graphing utility,
graph and sketch

on

61. On a graphing utility,
graph each polar equation.
Explain the similarities and
differences you observe in
the graphs.

62. On a graphing utility,
graph each polar equation.
Explain the similarities and
differences you observe in
the graphs.

63. On a graphing utility,
graph each polar equation.
Explain the similarities and
differences you observe in
the graphs.

Extensions

For the following exercises, draw each polar equation on the same set of polar axes, and find the points of intersection.

64. 65. 66.

67. 68. 69. ,

70. 71. 72. ,
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10.5 Polar Form of Complex Numbers
Learning Objectives
In this section, you will:

Plot complex numbers in the complex plane.
Find the absolute value of a complex number.
Write complex numbers in polar form.
Convert a complex number from polar to rectangular form.
Find products of complex numbers in polar form.
Find quotients of complex numbers in polar form.
Find powers of complex numbers in polar form.
Find roots of complex numbers in polar form.

“God made the integers; all else is the work of man.” This rather famous quote by nineteenth-century German
mathematician Leopold Kronecker sets the stage for this section on the polar form of a complex number. Complex
numbers were invented by people and represent over a thousand years of continuous investigation and struggle by
mathematicians such as Pythagoras, Descartes, De Moivre, Euler, Gauss, and others. Complex numbers answered
questions that for centuries had puzzled the greatest minds in science.

We first encountered complex numbers in Complex Numbers. In this section, we will focus on the mechanics of working
with complex numbers: translation of complex numbers from polar form to rectangular form and vice versa,
interpretation of complex numbers in the scheme of applications, and application of De Moivre’s Theorem.

Plotting Complex Numbers in the Complex Plane
Plotting a complex number is similar to plotting a real number, except that the horizontal axis represents the real
part of the number, and the vertical axis represents the imaginary part of the number,

HOW TO

Given a complex number plot it in the complex plane.

1. Label the horizontal axis as the real axis and the vertical axis as the imaginary axis.
2. Plot the point in the complex plane by moving units in the horizontal direction and units in the vertical

direction.

EXAMPLE 1

Plotting a Complex Number in the Complex Plane
Plot the complex number in the complex plane.

Solution
From the origin, move two units in the positive horizontal direction and three units in the negative vertical direction. See
Figure 1.
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Figure 1

TRY IT #1 Plot the point in the complex plane.

Finding the Absolute Value of a Complex Number
The first step toward working with a complex number in polar form is to find the absolute value. The absolute value of a
complex number is the same as its magnitude, or It measures the distance from the origin to a point in the plane.
For example, the graph of in Figure 2, shows

Figure 2

Absolute Value of a Complex Number

Given a complex number, the absolute value of is defined as

It is the distance from the origin to the point

Notice that the absolute value of a real number gives the distance of the number from 0, while the absolute value of a
complex number gives the distance of the number from the origin,
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EXAMPLE 2

Finding the Absolute Value of a Complex Number with a Radical
Find the absolute value of

Solution
Using the formula, we have

See Figure 3.

Figure 3

TRY IT #2 Find the absolute value of the complex number

EXAMPLE 3

Finding the Absolute Value of a Complex Number
Given find

Solution
Using the formula, we have

The absolute value is 5. See Figure 4.
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Figure 4

TRY IT #3 Given find

Writing Complex Numbers in Polar Form
The polar form of a complex number expresses a number in terms of an angle and its distance from the origin
Given a complex number in rectangular form expressed as we use the same conversion formulas as we do to
write the number in trigonometric form:

We review these relationships in Figure 5.

Figure 5

We use the term modulus to represent the absolute value of a complex number, or the distance from the origin to the
point The modulus, then, is the same as the radius in polar form. We use to indicate the angle of direction
(just as with polar coordinates). Substituting, we have

Polar Form of a Complex Number

Writing a complex number in polar form involves the following conversion formulas:
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Making a direct substitution, we have

where is the modulus and is the argument. We often use the abbreviation to represent

EXAMPLE 4

Expressing a Complex Number Using Polar Coordinates
Express the complex number using polar coordinates.

Solution
On the complex plane, the number is the same as Writing it in polar form, we have to calculate first.

Next, we look at If and then In polar coordinates, the complex number can be
written as or See Figure 6.

Figure 6

TRY IT #4 Express as in polar form.

EXAMPLE 5

Finding the Polar Form of a Complex Number
Find the polar form of

Solution
First, find the value of
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Find the angle using the formula:

Thus, the solution is

TRY IT #5 Write in polar form.

Converting a Complex Number from Polar to Rectangular Form
Converting a complex number from polar form to rectangular form is a matter of evaluating what is given and using the
distributive property. In other words, given first evaluate the trigonometric functions and

Then, multiply through by

EXAMPLE 6

Converting from Polar to Rectangular Form
Convert the polar form of the given complex number to rectangular form:

Solution
We begin by evaluating the trigonometric expressions.

After substitution, the complex number is

We apply the distributive property:

The rectangular form of the given point in complex form is
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EXAMPLE 7

Finding the Rectangular Form of a Complex Number
Find the rectangular form of the complex number given and

Solution

If and we first determine We then find and

The rectangular form of the given number in complex form is

TRY IT #6 Convert the complex number to rectangular form:

Finding Products of Complex Numbers in Polar Form
Now that we can convert complex numbers to polar form we will learn how to perform operations on complex numbers
in polar form. For the rest of this section, we will work with formulas developed by French mathematician Abraham De
Moivre (1667-1754). These formulas have made working with products, quotients, powers, and roots of complex
numbers much simpler than they appear. The rules are based on multiplying the moduli and adding the arguments.

Products of Complex Numbers in Polar Form

If and then the product of these numbers is given as:

Notice that the product calls for multiplying the moduli and adding the angles.

EXAMPLE 8

Finding the Product of Two Complex Numbers in Polar Form
Find the product of given and

Solution
Follow the formula

Finding Quotients of Complex Numbers in Polar Form
The quotient of two complex numbers in polar form is the quotient of the two moduli and the difference of the two
arguments.
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Quotients of Complex Numbers in Polar Form

If and then the quotient of these numbers is

Notice that the moduli are divided, and the angles are subtracted.

HOW TO

Given two complex numbers in polar form, find the quotient.

1. Divide

2. Find
3. Substitute the results into the formula: Replace with and replace with

4. Calculate the new trigonometric expressions and multiply through by

EXAMPLE 9

Finding the Quotient of Two Complex Numbers
Find the quotient of and

Solution
Using the formula, we have

TRY IT #7 Find the product and the quotient of and

Finding Powers of Complex Numbers in Polar Form
Finding powers of complex numbers is greatly simplified using De Moivre’s Theorem. It states that, for a positive
integer is found by raising the modulus to the power and multiplying the argument by It is the standard
method used in modern mathematics.

De Moivre’s Theorem

If is a complex number, then

where is a positive integer.
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EXAMPLE 10

Evaluating an Expression Using De Moivre’s Theorem
Evaluate the expression using De Moivre’s Theorem.

Solution
Since De Moivre’s Theorem applies to complex numbers written in polar form, we must first write in polar form.
Let us find

Then we find Using the formula gives

Use De Moivre’s Theorem to evaluate the expression.

Finding Roots of Complex Numbers in Polar Form
To find the nth root of a complex number in polar form, we use the Root Theorem or De Moivre’s Theorem and raise
the complex number to a power with a rational exponent. There are several ways to represent a formula for finding
roots of complex numbers in polar form.

The nth Root Theorem

To find the root of a complex number in polar form, use the formula given as

where We add to in order to obtain the periodic roots.

EXAMPLE 11

Finding the nth Root of a Complex Number
Evaluate the cube roots of

Solution
We have
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There will be three roots: When we have

When we have

When we have

Remember to find the common denominator to simplify fractions in situations like this one. For the angle
simplification is

TRY IT #8 Find the four fourth roots of

MEDIA

Access these online resources for additional instruction and practice with polar forms of complex numbers.

The Product and Quotient of Complex Numbers in Trigonometric Form (http://openstax.org/l/prodquocomplex)
De Moivre’s Theorem (http://openstax.org/l/demoivre)

10.5 SECTION EXERCISES
Verbal

1. A complex number is
Explain each part.

2. What does the absolute
value of a complex number
represent?

3. How is a complex number
converted to polar form?

4. How do we find the product
of two complex numbers?

5. What is De Moivre’s
Theorem and what is it used
for?
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Algebraic

For the following exercises, find the absolute value of the given complex number.

6. 7. 8.

9. 10. 11.

For the following exercises, write the complex number in polar form.

12. 13. 14.

15. 16.

For the following exercises, convert the complex number from polar to rectangular form.

17. 18. 19.

20. 21. 22.

For the following exercises, find in polar form.

23. 24.

25. 26.

27. 28.

For the following exercises, find in polar form.

29. 30.

31. 32.

33. 34.

For the following exercises, find the powers of each complex number in polar form.

35. Find when 36. Find when 37. Find when

38. Find when 39. Find when 40. Find when
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For the following exercises, evaluate each root.

41. Evaluate the cube root of
when

42. Evaluate the square root of
when

43. Evaluate the cube root of
when

44. Evaluate the square root of
when

45. Evaluate the square root of
when

Graphical

For the following exercises, plot the complex number in the complex plane.

46. 47. 48.

49. 50. 51.

52. 53. 54.

55.

Technology

For the following exercises, find all answers rounded to the nearest hundredth.

56. Use the rectangular to
polar feature on the
graphing calculator to
change to polar
form.

57. Use the rectangular to
polar feature on the
graphing calculator to
change to polar
form.

58. Use the rectangular to
polar feature on the
graphing calculator to
change to polar
form.

59. Use the polar to
rectangular feature on the
graphing calculator to
change to
rectangular form.

60. Use the polar to
rectangular feature on the
graphing calculator to
change to
rectangular form.

61. Use the polar to
rectangular feature on the
graphing calculator to
change to
rectangular form.

10.6 Parametric Equations
Learning Objectives
In this section, you will:

Parameterize a curve.
Eliminate the parameter.
Find a rectangular equation for a curve defined parametrically.
Find parametric equations for curves defined by rectangular equations.

Consider the path a moon follows as it orbits a planet, which simultaneously rotates around the sun, as seen in Figure 1.
At any moment, the moon is located at a particular spot relative to the planet. But how do we write and solve the
equation for the position of the moon when the distance from the planet, the speed of the moon’s orbit around the
planet, and the speed of rotation around the sun are all unknowns? We can solve only for one variable at a time.
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Figure 1

In this section, we will consider sets of equations given by and where is the independent variable of time. We
can use these parametric equations in a number of applications when we are looking for not only a particular position
but also the direction of the movement. As we trace out successive values of the orientation of the curve becomes
clear. This is one of the primary advantages of using parametric equations: we are able to trace the movement of an
object along a path according to time. We begin this section with a look at the basic components of parametric
equations and what it means to parameterize a curve. Then we will learn how to eliminate the parameter, translate the
equations of a curve defined parametrically into rectangular equations, and find the parametric equations for curves
defined by rectangular equations.

Parameterizing a Curve
When an object moves along a curve—or curvilinear path—in a given direction and in a given amount of time, the
position of the object in the plane is given by the x-coordinate and the y-coordinate. However, both and vary over
time and so are functions of time. For this reason, we add another variable, the parameter, upon which both and are
dependent functions. In the example in the section opener, the parameter is time, The position of the moon at time,

is represented as the function and the position of the moon at time, is represented as the function
Together, and are called parametric equations, and generate an ordered pair Parametric equations
primarily describe motion and direction.

When we parameterize a curve, we are translating a single equation in two variables, such as and   into an

equivalent pair of equations in three variables, and One of the reasons we parameterize a curve is because the
parametric equations yield more information: specifically, the direction of the object’s motion over time.

When we graph parametric equations, we can observe the individual behaviors of and of There are a number of
shapes that cannot be represented in the form meaning that they are not functions. For example, consider the
graph of a circle, given as Solving for gives or two equations: and

If we graph and together, the graph will not pass the vertical line test, as shown in Figure 2.
Thus, the equation for the graph of a circle is not a function.

Figure 2
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However, if we were to graph each equation on its own, each one would pass the vertical line test and therefore would
represent a function. In some instances, the concept of breaking up the equation for a circle into two functions is similar
to the concept of creating parametric equations, as we use two functions to produce a non-function. This will become
clearer as we move forward.

Parametric Equations

Suppose is a number on an interval, The set of ordered pairs, where and forms a
plane curve based on the parameter The equations and are the parametric equations.

EXAMPLE 1

Parameterizing a Curve
Parameterize the curve letting Graph both equations.

Solution
If then to find we replace the variable with the expression given in In other words,
Make a table of values similar to Table 1, and sketch the graph.

Table 1

See the graphs in Figure 3. It may be helpful to use the TRACE feature of a graphing calculator to see how the points are
generated as increases.

10.6 • Parametric Equations 971



Figure 3 (a) Parametric (b) Rectangular

Analysis
The arrows indicate the direction in which the curve is generated. Notice the curve is identical to the curve of

TRY IT #1 Construct a table of values and plot the parametric equations:

EXAMPLE 2

Finding a Pair of Parametric Equations
Find a pair of parametric equations that models the graph of using the parameter Plot some points
and sketch the graph.

Solution
If and we substitute for into the equation, then Our pair of parametric equations is

To graph the equations, first we construct a table of values like that in Table 2. We can choose values around from
to The values in the column will be the same as those in the column because Calculate

values for the column

Table 2
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The graph of is a parabola facing downward, as shown in Figure 4. We have mapped the curve over the
interval shown as a solid line with arrows indicating the orientation of the curve according to Orientation
refers to the path traced along the curve in terms of increasing values of As this parabola is symmetric with respect to
the line the values of are reflected across the y-axis.

Figure 4

TRY IT #2 Parameterize the curve given by

EXAMPLE 3

Finding Parametric Equations That Model Given Criteria
An object travels at a steady rate along a straight path to in the same plane in four seconds. The
coordinates are measured in meters. Find parametric equations for the position of the object.

Solution
The parametric equations are simple linear expressions, but we need to view this problem in a step-by-step fashion. The
x-value of the object starts at meters and goes to 3 meters. This means the distance x has changed by 8 meters in 4
seconds, which is a rate of or We can write the x-coordinate as a linear function with respect to time as

In the linear function template and

Similarly, the y-value of the object starts at 3 and goes to which is a change in the distance y of −4 meters in 4
seconds, which is a rate of or We can also write the y-coordinate as the linear function
Together, these are the parametric equations for the position of the object, where and are expressed in meters and
represents time:

Using these equations, we can build a table of values for and (see Table 3). In this example, we limited values of
to non-negative numbers. In general, any value of can be used.

Table 3
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Table 3

From this table, we can create three graphs, as shown in Figure 5.

Figure 5 (a) A graph of vs. representing the horizontal position over time. (b) A graph of vs. representing the
vertical position over time. (c) A graph of vs. representing the position of the object in the plane at time

Analysis
Again, we see that, in Figure 5(c), when the parameter represents time, we can indicate the movement of the object
along the path with arrows.

Eliminating the Parameter
In many cases, we may have a pair of parametric equations but find that it is simpler to draw a curve if the equation
involves only two variables, such as and Eliminating the parameter is a method that may make graphing some
curves easier. However, if we are concerned with the mapping of the equation according to time, then it will be
necessary to indicate the orientation of the curve as well. There are various methods for eliminating the parameter
from a set of parametric equations; not every method works for every type of equation. Here we will review the methods
for the most common types of equations.

Eliminating the Parameter from Polynomial, Exponential, and Logarithmic Equations
For polynomial, exponential, or logarithmic equations expressed as two parametric equations, we choose the equation
that is most easily manipulated and solve for We substitute the resulting expression for into the second equation.
This gives one equation in and

EXAMPLE 4

Eliminating the Parameter in Polynomials
Given and eliminate the parameter, and write the parametric equations as a Cartesian
equation.

Solution
We will begin with the equation for because the linear equation is easier to solve for

Next, substitute for in

974 10 • Further Applications of Trigonometry

Access for free at openstax.org



The Cartesian form is

Analysis
This is an equation for a parabola in which, in rectangular terms, is dependent on From the curve’s vertex at
the graph sweeps out to the right. See Figure 6. In this section, we consider sets of equations given by the functions
and where is the independent variable of time. Notice, both and are functions of time; so in general is not a
function of

Figure 6

TRY IT #3 Given the equations below, eliminate the parameter and write as a rectangular equation for as a
function of

EXAMPLE 5

Eliminating the Parameter in Exponential Equations
Eliminate the parameter and write as a Cartesian equation: and

Solution
Isolate

Substitute the expression into

The Cartesian form is
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Analysis
The graph of the parametric equation is shown in Figure 7(a). The domain is restricted to The Cartesian equation,

is shown in Figure 7(b) and has only one restriction on the domain,

Figure 7

EXAMPLE 6

Eliminating the Parameter in Logarithmic Equations
Eliminate the parameter and write as a Cartesian equation: and

Solution
Solve the first equation for

Then, substitute the expression for into the equation.

The Cartesian form is

Analysis
To be sure that the parametric equations are equivalent to the Cartesian equation, check the domains. The parametric
equations restrict the domain on to we restrict the domain on to The domain for the
parametric equation is restricted to we limit the domain on to

TRY IT #4 Eliminate the parameter and write as a rectangular equation.

Eliminating the Parameter from Trigonometric Equations
Eliminating the parameter from trigonometric equations is a straightforward substitution. We can use a few of the
familiar trigonometric identities and the Pythagorean Theorem.

First, we use the identities:

Solving for and we have
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Then, use the Pythagorean Theorem:

Substituting gives

EXAMPLE 7

Eliminating the Parameter from a Pair of Trigonometric Parametric Equations
Eliminate the parameter from the given pair of trigonometric equations where and sketch the graph.

Solution
Solving for and we have

Next, use the Pythagorean identity and make the substitutions.

The graph for the equation is shown in Figure 8.

Figure 8

Analysis

Applying the general equations for conic sections (introduced in Analytic Geometry, we can identify as an
ellipse centered at Notice that when the coordinates are and when the coordinates are
This shows the orientation of the curve with increasing values of

TRY IT #5 Eliminate the parameter from the given pair of parametric equations and write as a Cartesian
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equation: and

Finding Cartesian Equations from Curves Defined Parametrically
When we are given a set of parametric equations and need to find an equivalent Cartesian equation, we are essentially
“eliminating the parameter.” However, there are various methods we can use to rewrite a set of parametric equations as
a Cartesian equation. The simplest method is to set one equation equal to the parameter, such as In this case,

can be any expression. For example, consider the following pair of equations.

Rewriting this set of parametric equations is a matter of substituting for Thus, the Cartesian equation is

EXAMPLE 8

Finding a Cartesian Equation Using Alternate Methods
Use two different methods to find the Cartesian equation equivalent to the given set of parametric equations.

Solution
Method 1. First, let’s solve the equation for Then we can substitute the result into the equation.

Now substitute the expression for into the equation.

Method 2. Solve the equation for and substitute this expression in the equation.

Make the substitution and then solve for

TRY IT #6 Write the given parametric equations as a Cartesian equation: and

Finding Parametric Equations for Curves Defined by Rectangular Equations
Although we have just shown that there is only one way to interpret a set of parametric equations as a rectangular
equation, there are multiple ways to interpret a rectangular equation as a set of parametric equations. Any strategy we
may use to find the parametric equations is valid if it produces equivalency. In other words, if we choose an expression
to represent and then substitute it into the equation, and it produces the same graph over the same domain as the
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rectangular equation, then the set of parametric equations is valid. If the domain becomes restricted in the set of
parametric equations, and the function does not allow the same values for as the domain of the rectangular equation,
then the graphs will be different.

EXAMPLE 9

Finding a Set of Parametric Equations for Curves Defined by Rectangular Equations
Find a set of equivalent parametric equations for

Solution
An obvious choice would be to let Then But let’s try something more interesting. What if we
let Then we have

The set of parametric equations is

See Figure 9.

Figure 9

MEDIA

Access these online resources for additional instruction and practice with parametric equations.

Introduction to Parametric Equations (http://openstax.org/l/introparametric)
Converting Parametric Equations to Rectangular Form (http://openstax.org/l/convertpara)
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10.6 SECTION EXERCISES
Verbal

1. What is a system of
parametric equations?

2. Some examples of a third
parameter are time, length,
speed, and scale. Explain
when time is used as a
parameter.

3. Explain how to eliminate a
parameter given a set of
parametric equations.

4. What is a benefit of writing a
system of parametric
equations as a Cartesian
equation?

5. What is a benefit of using
parametric equations?

6. Why are there many sets of
parametric equations to
represent on Cartesian
function?

Algebraic

For the following exercises, eliminate the parameter to rewrite the parametric equation as a Cartesian equation.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25.

For the following exercises, rewrite the parametric equation as a Cartesian equation by building an table.

26. 27. 28.

29.
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For the following exercises, parameterize (write parametric equations for) each Cartesian equation by setting or
by setting

30. 31. 32.

33.

For the following exercises, parameterize (write parametric equations for) each Cartesian equation by using
and Identify the curve.

34. 35. 36.

37. 38. Parameterize the line from
to so that

the line is at at
and at at

39. Parameterize the line from
to so that

the line is at at
and at at

40. Parameterize the line from
to so that the

line is at at
and at at

41. Parameterize the line from
to so that the

line is at at and
at at

Technology

For the following exercises, use the table feature in the graphing calculator to determine whether the graphs intersect.

42. 43.

For the following exercises, use a graphing calculator to complete the table of values for each set of parametric
equations.

44.

–1

0

1

45.

1

2

3

46.

-1

0

1

2
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Extensions

47. Find two different sets of
parametric equations for

48. Find two different sets of
parametric equations for

49. Find two different sets of
parametric equations for

10.7 Parametric Equations: Graphs
Learning Objectives
In this section you will:

Graph plane curves described by parametric equations by plotting points.
Graph parametric equations.

While not every fan (or team manager) appreciates it, baseball and many other sports have become dependent on
analytics, which involve complex data recording and quantitative evaluation used to understand and predict behavior.
The earliest influence of analytics was mostly statistical; more recently, physics and other sciences have come into play.
Foremost among these is the focus on launch angle and exit velocity, which when at certain values can almost guarantee
a home run. On the other hand, emphasis on launch angle and focusing on home runs rather than overall hitting results
in far more outs. Consider the following situation: it is the bottom of the ninth inning, with two outs and two players on
base. The home team is losing by two runs. The batter swings and hits the baseball at 140 feet per second and at an
angle of approximately to the horizontal. How far will the ball travel? Will it clear the fence for a game-winning home
run? The outcome may depend partly on other factors (for example, the wind), but mathematicians can model the path
of a projectile and predict approximately how far it will travel using parametric equations. In this section, we’ll discuss
parametric equations and some common applications, such as projectile motion problems.

Figure 1 Parametric equations can model the path of a projectile. (credit: Paul Kreher, Flickr)

Graphing Parametric Equations by Plotting Points
In lieu of a graphing calculator or a computer graphing program, plotting points to represent the graph of an equation is
the standard method. As long as we are careful in calculating the values, point-plotting is highly dependable.

HOW TO

Given a pair of parametric equations, sketch a graph by plotting points.

1. Construct a table with three columns:
2. Evaluate and for values of over the interval for which the functions are defined.
3. Plot the resulting pairs
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EXAMPLE 1

Sketching the Graph of a Pair of Parametric Equations by Plotting Points
Sketch the graph of the parametric equations

Solution
Construct a table of values for and as in Table 1, and plot the points in a plane.

Table 1

The graph is a parabola with vertex at the point opening to the right. See Figure 2.

Figure 2

Analysis
As values for progress in a positive direction from 0 to 5, the plotted points trace out the top half of the parabola. As
values of become negative, they trace out the lower half of the parabola. There are no restrictions on the domain. The
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arrows indicate direction according to increasing values of The graph does not represent a function, as it will fail the
vertical line test. The graph is drawn in two parts: the positive values for and the negative values for

TRY IT #1 Sketch the graph of the parametric equations

EXAMPLE 2

Sketching the Graph of Trigonometric Parametric Equations
Construct a table of values for the given parametric equations and sketch the graph:

Solution
Construct a table like that in Table 2 using angle measure in radians as inputs for and evaluating and Using angles
with known sine and cosine values for makes calculations easier.

0

Table 2

Figure 3 shows the graph.
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Figure 3

By the symmetry shown in the values of and we see that the parametric equations represent an ellipse. The ellipse is
mapped in a counterclockwise direction as shown by the arrows indicating increasing values.

Analysis
We have seen that parametric equations can be graphed by plotting points. However, a graphing calculator will save
some time and reveal nuances in a graph that may be too tedious to discover using only hand calculations.

Make sure to change the mode on the calculator to parametric (PAR). To confirm, the window should show

instead of

TRY IT #2 Graph the parametric equations:

EXAMPLE 3

Graphing Parametric Equations and Rectangular Form Together
Graph the parametric equations and First, construct the graph using data points generated from
the parametric form. Then graph the rectangular form of the equation. Compare the two graphs.

Solution
Construct a table of values like that in Table 3.

Table 3
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Table 3

Plot the values from the table. See Figure 4.

Figure 4

Next, translate the parametric equations to rectangular form. To do this, we solve for in either or and then
substitute the expression for in the other equation. The result will be a function if solving for as a function of
or if solving for as a function of

Then, use the Pythagorean Theorem.

Analysis
In Figure 5, the data from the parametric equations and the rectangular equation are plotted together. The parametric
equations are plotted in blue; the graph for the rectangular equation is drawn on top of the parametric in a dashed style
colored red. Clearly, both forms produce the same graph.
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Figure 5

EXAMPLE 4

Graphing Parametric Equations and Rectangular Equations on the Coordinate System
Graph the parametric equations and and the rectangular equivalent on the same
coordinate system.

Solution
Construct a table of values for the parametric equations, as we did in the previous example, and graph on
the same grid, as in Figure 6.

Figure 6

Analysis
With the domain on restricted, we only plot positive values of The parametric data is graphed in blue and the graph
of the rectangular equation is dashed in red. Once again, we see that the two forms overlap.

TRY IT #3 Sketch the graph of the parametric equations along with the
rectangular equation on the same grid.

Applications of Parametric Equations
Many of the advantages of parametric equations become obvious when applied to solving real-world problems.
Although rectangular equations in x and y give an overall picture of an object's path, they do not reveal the position of
an object at a specific time. Parametric equations, however, illustrate how the values of x and y change depending on t,
as the location of a moving object at a particular time.

A common application of parametric equations is solving problems involving projectile motion. In this type of motion, an
object is propelled forward in an upward direction forming an angle of to the horizontal, with an initial speed of
and at a height above the horizontal.

10.7 • Parametric Equations: Graphs 987



...

The path of an object propelled at an inclination of to the horizontal, with initial speed and at a height above the
horizontal, is given by

where accounts for the effects of gravity and is the initial height of the object. Depending on the units involved in the
problem, use or The equation for gives horizontal distance, and the equation for gives the
vertical distance.

HOW TO

Given a projectile motion problem, use parametric equations to solve.

1. The horizontal distance is given by Substitute the initial speed of the object for
2. The expression indicates the angle at which the object is propelled. Substitute that angle in degrees for

3. The vertical distance is given by the formula The term represents the effect
of gravity. Depending on units involved, use or Again, substitute the initial speed for

and the height at which the object was propelled for
4. Proceed by calculating each term to solve for

EXAMPLE 5

Finding the Parametric Equations to Describe the Motion of a Baseball
Solve the problem presented at the beginning of this section. Does the batter hit the game-winning home run? Assume
that the ball is hit with an initial velocity of 140 feet per second at an angle of to the horizontal, making contact 3 feet
above the ground.

ⓐ Find the parametric equations to model the path of the baseball. ⓑ Where is the ball after 2 seconds?

ⓒ How long is the ball in the air? ⓓ Is it a home run?
Solution

ⓐ
Use the formulas to set up the equations. The horizontal position is found using the parametric equation for Thus,

The vertical position is found using the parametric equation for Thus,

ⓑ
Substitute 2 into the equations to find the horizontal and vertical positions of the ball.

After 2 seconds, the ball is 198 feet away from the batter’s box and 137 feet above the ground.
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ⓒ
To calculate how long the ball is in the air, we have to find out when it will hit ground, or when Thus,

When seconds, the ball has hit the ground. (The quadratic equation can be solved in various ways, but this
problem was solved using a computer math program.)

ⓓ
We cannot confirm that the hit was a home run without considering the size of the outfield, which varies from field to
field. However, for simplicity’s sake, let’s assume that the outfield wall is 400 feet from home plate in the deepest part
of the park. Let’s also assume that the wall is 10 feet high. In order to determine whether the ball clears the wall, we
need to calculate how high the ball is when x = 400 feet. So we will set x = 400, solve for and input into

The ball is 141.8 feet in the air when it soars out of the ballpark. It was indeed a home run. See Figure 7.

Figure 7

MEDIA

Access the following online resource for additional instruction and practice with graphs of parametric equations.

Graphing Parametric Equations on the TI-84 (http://openstax.org/l/graphpara84)

10.7 SECTION EXERCISES
Verbal

1. What are two methods used
to graph parametric
equations?

2. What is one difference in
point-plotting parametric
equations compared to
Cartesian equations?

3. Why are some graphs drawn
with arrows?

4. Name a few common types
of graphs of parametric
equations.

5. Why are parametric graphs
important in understanding
projectile motion?
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Graphical

For the following exercises, graph each set of parametric equations by making a table of values. Include the orientation
on the graph.

6. 7.

8. 9. 10.

11.

For the following exercises, sketch the curve and include the orientation.

12. 13. 14.

15. 16. 17.

18. 19. 20.

21. 22.
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For the following exercises, graph the equation and include the orientation. Then, write the Cartesian equation.

23. 24. 25.

26. 27.

For the following exercises, graph the equation and include the orientation.

28. 29. 30.

31. 32. 33.

For the following exercises, use the parametric equations for integers a and b:

34. Graph on the domain
where and

and include the
orientation.

35. Graph on the domain
where and

, and include the
orientation.

36. Graph on the domain
where and

, and include the
orientation.

37. Graph on the domain
where and

, and include the
orientation.

38. If is 1 more than
describe the effect the
values of and have on
the graph of the
parametric equations.

39. Describe the graph if
and

40. What happens if is 1
more than Describe the
graph.

41. If the parametric equations
and

have the graph of a
horizontal parabola
opening to the right, what
would change the direction
of the curve?

For the following exercises, describe the graph of the set of parametric equations.

42. and is
linear

43. and is linear 44. and is
linear

45. Write the parametric
equations of a circle with
center radius 5, and
a counterclockwise
orientation.

46. Write the parametric
equations of an ellipse with
center major axis of
length 10, minor axis of
length 6, and a
counterclockwise
orientation.
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For the following exercises, use a graphing utility to graph on the window by on the domain for the
following values of and , and include the orientation.

47. 48. 49.

50. 51. 52.

Technology

For the following exercises, look at the graphs that were created by parametric equations of the form

Use the parametric mode on the graphing calculator to find the values of and to achieve each graph.

53.

54.
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55.

56.

For the following exercises, use a graphing utility to graph the given parametric equations.

a.

b.

c.

57. Graph all three sets of
parametric equations on
the domain

58. Graph all three sets of
parametric equations on
the domain

59. Graph all three sets of
parametric equations on
the domain
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60. The graph of each set of
parametric equations
appears to “creep” along
one of the axes. What
controls which axis the
graph creeps along?

61. Explain the effect on the
graph of the parametric
equation when we
switched and .

62. Explain the effect on the
graph of the parametric
equation when we
changed the domain.

Extensions

63. An object is thrown in the air with vertical velocity
of 20 ft/s and horizontal velocity of 15 ft/s. The
object’s height can be described by the equation

, while the object moves
horizontally with constant velocity 15 ft/s. Write
parametric equations for the object’s position,
and then eliminate time to write height as a
function of horizontal position.

64. A skateboarder riding on a level surface at a
constant speed of 9 ft/s throws a ball in the air,
the height of which can be described by the
equation Write
parametric equations for the ball’s position, and
then eliminate time to write height as a function
of horizontal position.

For the following exercises, use this scenario: A dart is thrown upward with an initial velocity of 65 ft/s at an angle of
elevation of 52°. Consider the position of the dart at any time Neglect air resistance.

65. Find parametric equations
that model the problem
situation.

66. Find all possible values of
that represent the
situation.

67. When will the dart hit the
ground?

68. Find the maximum height
of the dart.

69. At what time will the dart
reach maximum height?

For the following exercises, look at the graphs of each of the four parametric equations. Although they look unusual and
beautiful, they are so common that they have names, as indicated in each exercise. Use a graphing utility to graph each
on the indicated domain.

70. An epicycloid: on the

domain .

71. A hypocycloid: on the

domain .

72. A hypotrochoid: on

the domain .

73. A rose: on the domain

.

10.8 Vectors
Learning Objectives
In this section you will:

View vectors geometrically.
Find magnitude and direction.
Perform vector addition and scalar multiplication.
Find the component form of a vector.
Find the unit vector in the direction of .
Perform operations with vectors in terms of and .
Find the dot product of two vectors.

An airplane is flying at an airspeed of 200 miles per hour headed on a SE bearing of 140°. A north wind (from north to
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south) is blowing at 16.2 miles per hour, as shown in Figure 1. What are the ground speed and actual bearing of the
plane?

Figure 1

Ground speed refers to the speed of a plane relative to the ground. Airspeed refers to the speed a plane can travel
relative to its surrounding air mass. These two quantities are not the same because of the effect of wind. In an earlier
section, we used triangles to solve a similar problem involving the movement of boats. Later in this section, we will find
the airplane’s groundspeed and bearing, while investigating another approach to problems of this type. First, however,
let’s examine the basics of vectors.

A Geometric View of Vectors
A vector is a specific quantity drawn as a line segment with an arrowhead at one end. It has an initial point, where it
begins, and a terminal point, where it ends. A vector is defined by its magnitude, or the length of the line, and its
direction, indicated by an arrowhead at the terminal point. Thus, a vector is a directed line segment. There are various
symbols that distinguish vectors from other quantities:

• Lower case, boldfaced type, with or without an arrow on top such as
• Given initial point and terminal point a vector can be represented as The arrowhead on top is what

indicates that it is not just a line, but a directed line segment.
• Given an initial point of and terminal point a vector may be represented as

This last symbol has special significance. It is called the standard position. The position vector has an initial point
and a terminal point To change any vector into the position vector, we think about the change in the

x-coordinates and the change in the y-coordinates. Thus, if the initial point of a vector is and the terminal
point is then the position vector is found by calculating

In Figure 2, we see the original vector and the position vector

Figure 2
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Properties of Vectors

A vector is a directed line segment with an initial point and a terminal point. Vectors are identified by magnitude, or
the length of the line, and direction, represented by the arrowhead pointing toward the terminal point. The position
vector has an initial point at and is identified by its terminal point

EXAMPLE 1

Find the Position Vector
Consider the vector whose initial point is and terminal point is Find the position vector.

Solution
The position vector is found by subtracting one x-coordinate from the other x-coordinate, and one y-coordinate from the
other y-coordinate. Thus

The position vector begins at and terminates at The graphs of both vectors are shown in Figure 3.

Figure 3

We see that the position vector is

EXAMPLE 2

Drawing a Vector with the Given Criteria and Its Equivalent Position Vector
Find the position vector given that vector has an initial point at and a terminal point at then graph both
vectors in the same plane.

Solution
The position vector is found using the following calculation:

Thus, the position vector begins at and terminates at See Figure 4.
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Figure 4

TRY IT #1 Draw a vector that connects from the origin to the point

Finding Magnitude and Direction
To work with a vector, we need to be able to find its magnitude and its direction. We find its magnitude using the
Pythagorean Theorem or the distance formula, and we find its direction using the inverse tangent function.

Magnitude and Direction of a Vector

Given a position vector the magnitude is found by The direction is equal to the angle
formed with the x-axis, or with the y-axis, depending on the application. For a position vector, the direction is found
by as illustrated in Figure 5.

Figure 5

Two vectors v and u are considered equal if they have the same magnitude and the same direction. Additionally, if
both vectors have the same position vector, they are equal.

EXAMPLE 3

Finding the Magnitude and Direction of a Vector
Find the magnitude and direction of the vector with initial point and terminal point Draw the
vector.

Solution
First, find the position vector.
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We use the Pythagorean Theorem to find the magnitude.

The direction is given as

However, the angle terminates in the fourth quadrant, so we add 360° to obtain a positive angle. Thus,
See Figure 6.

Figure 6

EXAMPLE 4

Showing That Two Vectors Are Equal
Show that vector v with initial point at and terminal point at is equal to vector u with initial point at

and terminal point at Draw the position vector on the same grid as v and u. Next, find the magnitude
and direction of each vector.

Solution
As shown in Figure 7, draw the vector starting at initial and terminal point Draw the vector with initial
point and terminal point Find the standard position for each.

Next, find and sketch the position vector for v and u. We have

Since the position vectors are the same, v and u are the same.

An alternative way to check for vector equality is to show that the magnitude and direction are the same for both
vectors. To show that the magnitudes are equal, use the Pythagorean Theorem.
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As the magnitudes are equal, we now need to verify the direction. Using the tangent function with the position vector
gives

However, we can see that the position vector terminates in the second quadrant, so we add Thus, the direction is

Figure 7

Performing Vector Addition and Scalar Multiplication
Now that we understand the properties of vectors, we can perform operations involving them. While it is convenient to
think of the vector as an arrow or directed line segment from the origin to the point vectors can be
situated anywhere in the plane. The sum of two vectors u and v, or vector addition, produces a third vector u+ v, the
resultant vector.

To find u + v, we first draw the vector u, and from the terminal end of u, we drawn the vector v. In other words, we have
the initial point of v meet the terminal end of u. This position corresponds to the notion that we move along the first
vector and then, from its terminal point, we move along the second vector. The sum u + v is the resultant vector because
it results from addition or subtraction of two vectors. The resultant vector travels directly from the beginning of u to the
end of v in a straight path, as shown in Figure 8.

Figure 8

Vector subtraction is similar to vector addition. To find u − v, view it as u + (−v). Adding −v is reversing direction of v and
adding it to the end of u. The new vector begins at the start of u and stops at the end point of −v. See Figure 9 for a
visual that compares vector addition and vector subtraction using parallelograms.
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Figure 9

EXAMPLE 5

Adding and Subtracting Vectors
Given and find two new vectors u + v, and u − v.

Solution
To find the sum of two vectors, we add the components. Thus,

See Figure 10(a).

To find the difference of two vectors, add the negative components of to Thus,

See Figure 10(b).

Figure 10 (a) Sum of two vectors (b) Difference of two vectors

Multiplying By a Scalar
While adding and subtracting vectors gives us a new vector with a different magnitude and direction, the process of
multiplying a vector by a scalar, a constant, changes only the magnitude of the vector or the length of the line. Scalar
multiplication has no effect on the direction unless the scalar is negative, in which case the direction of the resulting
vector is opposite the direction of the original vector.

Scalar Multiplication

Scalar multiplication involves the product of a vector and a scalar. Each component of the vector is multiplied by the
scalar. Thus, to multiply by , we have

Only the magnitude changes, unless is negative, and then the vector reverses direction.
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EXAMPLE 6

Performing Scalar Multiplication
Given vector find 3v, and −v.

Solution
See Figure 11 for a geometric interpretation. If then

Figure 11

Analysis
Notice that the vector 3v is three times the length of v, is half the length of v, and –v is the same length of v, but in
the opposite direction.

TRY IT #2 Find the scalar multiple 3 given

EXAMPLE 7

Using Vector Addition and Scalar Multiplication to Find a New Vector
Given and find a new vector w = 3u + 2v.

Solution
First, we must multiply each vector by the scalar.

Then, add the two together.
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So,

Finding Component Form
In some applications involving vectors, it is helpful for us to be able to break a vector down into its components. Vectors
are comprised of two components: the horizontal component is the direction, and the vertical component is the
direction. For example, we can see in the graph in Figure 12 that the position vector comes from adding the
vectors v1 and v2. We have v1 with initial point and terminal point

We also have v2 with initial point and terminal point

Therefore, the position vector is

Using the Pythagorean Theorem, the magnitude of v1 is 2, and the magnitude of v2 is 3. To find the magnitude of v, use
the formula with the position vector.

The magnitude of v is To find the direction, we use the tangent function

Figure 12

Thus, the magnitude of is and the direction is off the horizontal.
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EXAMPLE 8

Finding the Components of the Vector
Find the components of the vector with initial point and terminal point

Solution
First find the standard position.

See the illustration in Figure 13.

Figure 13

The horizontal component is and the vertical component is

Finding the Unit Vector in the Direction of v
In addition to finding a vector’s components, it is also useful in solving problems to find a vector in the same direction as
the given vector, but of magnitude 1. We call a vector with a magnitude of 1 a unit vector. We can then preserve the
direction of the original vector while simplifying calculations.

Unit vectors are defined in terms of components. The horizontal unit vector is written as and is directed along
the positive horizontal axis. The vertical unit vector is written as and is directed along the positive vertical axis.
See Figure 14.

Figure 14

The Unit Vectors

If is a nonzero vector, then is a unit vector in the direction of Any vector divided by its magnitude is a unit

vector. Notice that magnitude is always a scalar, and dividing by a scalar is the same as multiplying by the reciprocal
of the scalar.
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EXAMPLE 9

Finding the Unit Vector in the Direction of v
Find a unit vector in the same direction as

Solution
First, we will find the magnitude.

Then we divide each component by which gives a unit vector in the same direction as v:

or, in component form

See Figure 15.

Figure 15

Verify that the magnitude of the unit vector equals 1. The magnitude of is given as

The vector u i j is the unit vector in the same direction as v

Performing Operations with Vectors in Terms of i and j
So far, we have investigated the basics of vectors: magnitude and direction, vector addition and subtraction, scalar
multiplication, the components of vectors, and the representation of vectors geometrically. Now that we are familiar
with the general strategies used in working with vectors, we will represent vectors in rectangular coordinates in terms of
i and j.
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Vectors in the Rectangular Plane

Given a vector with initial point and terminal point v is written as

The position vector from to where and is written as v = ai + bj. This vector
sum is called a linear combination of the vectors i and j.

The magnitude of v = ai + bj is given as See Figure 16.

Figure 16

EXAMPLE 10

Writing a Vector in Terms of i and j
Given a vector with initial point and terminal point write the vector in terms of and

Solution
Begin by writing the general form of the vector. Then replace the coordinates with the given values.

EXAMPLE 11

Writing a Vector in Terms of i and j Using Initial and Terminal Points
Given initial point and terminal point write the vector in terms of and

Solution
Begin by writing the general form of the vector. Then replace the coordinates with the given values.

TRY IT #3 Write the vector with initial point and terminal point in terms of and

Performing Operations on Vectors in Terms of i and j
When vectors are written in terms of and we can carry out addition, subtraction, and scalar multiplication by
performing operations on corresponding components.

10.8 • Vectors 1005



Adding and Subtracting Vectors in Rectangular Coordinates

Given v = ai + bj and u = ci + dj, then

EXAMPLE 12

Finding the Sum of the Vectors
Find the sum of and

Solution
According to the formula, we have

Calculating the Component Form of a Vector: Direction
We have seen how to draw vectors according to their initial and terminal points and how to find the position vector. We
have also examined notation for vectors drawn specifically in the Cartesian coordinate plane using For any of
these vectors, we can calculate the magnitude. Now, we want to combine the key points, and look further at the ideas of
magnitude and direction.

Calculating direction follows the same straightforward process we used for polar coordinates. We find the direction of
the vector by finding the angle to the horizontal. We do this by using the basic trigonometric identities, but with
replacing

Vector Components in Terms of Magnitude and Direction

Given a position vector and a direction angle

Thus, and magnitude is expressed as

EXAMPLE 13

Writing a Vector in Terms of Magnitude and Direction
Write a vector with length 7 at an angle of 135° to the positive x-axis in terms of magnitude and direction.

Solution
Using the conversion formulas and we find that

This vector can be written as or simplified as
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TRY IT #4 A vector travels from the origin to the point Write the vector in terms of magnitude and
direction.

Finding the Dot Product of Two Vectors
As we discussed earlier in the section, scalar multiplication involves multiplying a vector by a scalar, and the result is a
vector. As we have seen, multiplying a vector by a number is called scalar multiplication. If we multiply a vector by a
vector, there are two possibilities: the dot product and the cross product. We will only examine the dot product here; you
may encounter the cross product in more advanced mathematics courses.

The dot product of two vectors involves multiplying two vectors together, and the result is a scalar.

Dot Product

The dot product of two vectors and is the sum of the product of the horizontal components and
the product of the vertical components.

To find the angle between the two vectors, use the formula below.

EXAMPLE 14

Finding the Dot Product of Two Vectors
Find the dot product of and

Solution
Using the formula, we have

EXAMPLE 15

Finding the Dot Product of Two Vectors and the Angle between Them
Find the dot product of v1 = 5i + 2j and v2 = 3i + 7j. Then, find the angle between the two vectors.

Solution
Finding the dot product, we multiply corresponding components.

To find the angle between them, we use the formula
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See Figure 17.

Figure 17

EXAMPLE 16

Finding the Angle between Two Vectors
Find the angle between and

Solution
Using the formula, we have

See Figure 18.
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Figure 18

EXAMPLE 17

Finding Ground Speed and Bearing Using Vectors
We now have the tools to solve the problem we introduced in the opening of the section.

An airplane is flying at an airspeed of 200 miles per hour headed on a SE bearing of 140°. A north wind (from north to
south) is blowing at 16.2 miles per hour. What are the ground speed and actual bearing of the plane? See Figure 19.

Figure 19

Solution
The ground speed is represented by in the diagram, and we need to find the angle in order to calculate the adjusted
bearing, which will be

Notice in Figure 19, that angle must be equal to angle by the rule of alternating interior angles, so angle
is 140°. We can find by the Law of Cosines:

The ground speed is approximately 213 miles per hour. Now we can calculate the bearing using the Law of Sines.
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Therefore, the plane has a SE bearing of 140°+2.8°=142.8°. The ground speed is 212.7 miles per hour.

MEDIA

Access these online resources for additional instruction and practice with vectors.

Introduction to Vectors (http://openstax.org/l/introvectors)
Vector Operations (http://openstax.org/l/vectoroperation)
The Unit Vector (http://openstax.org/l/unitvector)

10.8 SECTION EXERCISES
Verbal

1. What are the characteristics
of the letters that are
commonly used to
represent vectors?

2. How is a vector more
specific than a line
segment?

3. What are and and what
do they represent?

4. What is component form? 5. When a unit vector is
expressed as which
letter is the coefficient of the

and which the

Algebraic

6. Given a vector with initial
point and terminal
point find an
equivalent vector whose
initial point is Write
the vector in component
form

7. Given a vector with initial
point and terminal
point find an
equivalent vector whose
initial point is Write
the vector in component
form

8. Given a vector with initial
point and terminal
point find an
equivalent vector whose
initial point is Write
the vector in component
form

For the following exercises, determine whether the two vectors and are equal, where has an initial point and a
terminal point and has an initial point and a terminal point .

9. and 10. and

11. and 12. and

13. and 14. Given initial point and terminal point
write the vector in terms of and
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15. Given initial point and terminal point
write the vector in terms of and

For the following exercises, use the vectors u = i + 5j, v = −2i− 3j, and w = 4i − j.

16. Find u + (v − w) 17. Find 4v + 2u

For the following exercises, use the given vectors to compute u + v, u − v, and 2u − 3v.

18. 19. 20. Let v = −4i + 3j. Find a
vector that is half the
length and points in the
same direction as

21. Let v = 5i + 2j. Find a vector
that is twice the length and
points in the opposite
direction as

For the following exercises, find a unit vector in the same direction as the given vector.

22. a = 3i + 4j 23. b = −2i + 5j 24. c = 10i – j

25. 26. u = 100i + 200j 27. u = −14i + 2j

For the following exercises, find the magnitude and direction of the vector,

28. 29. 30.

31. 32. Given u = 3i − 4j and v = −2i
+ 3j, calculate

33. Given u = −i − j and v = i +
5j, calculate

34. Given and
calculate

35. Given u and v
calculate

Graphical

For the following exercises, given draw 3v and

36. 37. 38.
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For the following exercises, use the vectors shown to sketch u + v, u − v, and 2u.

39. 40. 41.

For the following exercises, use the vectors shown to sketch 2u + v.

42. 43.

For the following exercises, use the vectors shown to sketch u − 3v.

44. 45.
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For the following exercises, write the vector shown in component form.

46. 47. 48. Given initial point
and terminal

point write
the vector in terms of
and then draw the vector
on the graph.

49. Given initial point
and terminal

point write
the vector in terms of
and Draw the points and
the vector on the graph.

50. Given initial point
and terminal

point write
the vector in terms of
and Draw the points and
the vector on the graph.

Extensions

For the following exercises, use the given magnitude and direction in standard position, write the vector in component
form.

51. 52. 53.

54.

ⓐ Find the magnitude of
the normal (perpendicular)
component of the force.

ⓑ Find the magnitude of
the component of the force
that is parallel to the ramp.

55. A 60-pound box is resting
on a ramp that is inclined
12°. Rounding to the
nearest tenth,

ⓐ Find the magnitude of
the normal (perpendicular)
component of the force.

ⓑ Find the magnitude of
the component of the force
that is parallel to the ramp.

56. A 25-pound box is resting
on a ramp that is inclined
8°. Rounding to the nearest
tenth,

57. Find the magnitude of the
horizontal and vertical
components of a vector
with magnitude 8 pounds
pointed in a direction of
27° above the horizontal.
Round to the nearest
hundredth.

58. Find the magnitude of the
horizontal and vertical
components of the vector
with magnitude 4 pounds
pointed in a direction of
127° above the horizontal.
Round to the nearest
hundredth.

59. Find the magnitude of the
horizontal and vertical
components of a vector
with magnitude 5 pounds
pointed in a direction of
55° above the horizontal.
Round to the nearest
hundredth.

60. Find the magnitude of the
horizontal and vertical
components of the vector
with magnitude 1 pound
pointed in a direction of 8°
above the horizontal.
Round to the nearest
hundredth.
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Real-World Applications

61. A woman leaves home and
walks 3 miles west, then 2
miles southwest. How far
from home is she, and in
what direction must she
walk to head directly
home?

62. A boat leaves the marina
and sails 6 miles north,
then 2 miles northeast.
How far from the marina is
the boat, and in what
direction must it sail to
head directly back to the
marina?

63. A man starts walking from
home and walks 4 miles
east, 2 miles southeast, 5
miles south, 4 miles
southwest, and 2 miles
east. How far has he
walked? If he walked
straight home, how far
would he have to walk?

64. A woman starts walking
from home and walks 4
miles east, 7 miles
southeast, 6 miles south, 5
miles southwest, and 3
miles east. How far has she
walked? If she walked
straight home, how far
would she have to walk?

65. A man starts walking from
home and walks 3 miles at
20° north of west, then 5
miles at 10° west of south,
then 4 miles at 15° north of
east. If he walked straight
home, how far would he
have to the walk, and in
what direction?

66. A woman starts walking
from home and walks 6
miles at 40° north of east,
then 2 miles at 15° east of
south, then 5 miles at 30°
south of west. If she
walked straight home, how
far would she have to walk,
and in what direction?

67. An airplane is heading
north at an airspeed of 600
km/hr, but there is a wind
blowing from the
southwest at 80 km/hr.
How many degrees off
course will the plane end
up flying, and what is the
plane’s speed relative to
the ground?

68. An airplane is heading
north at an airspeed of 500
km/hr, but there is a wind
blowing from the
northwest at 50 km/hr.
How many degrees off
course will the plane end
up flying, and what is the
plane’s speed relative to
the ground?

69. An airplane needs to head
due north, but there is a
wind blowing from the
southwest at 60 km/hr. The
plane flies with an airspeed
of 550 km/hr. To end up
flying due north, how many
degrees west of north will
the pilot need to fly the
plane?

70. An airplane needs to head
due north, but there is a
wind blowing from the
northwest at 80 km/hr. The
plane flies with an airspeed
of 500 km/hr. To end up
flying due north, how many
degrees west of north will
the pilot need to fly the
plane?

71. As part of a video game,
the point is rotated
counterclockwise about the
origin through an angle of
35°. Find the new
coordinates of this point.

72. As part of a video game,
the point is rotated
counterclockwise about the
origin through an angle of
40°. Find the new
coordinates of this point.
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73. Two children are throwing
a ball back and forth
straight across the back
seat of a car. The ball is
being thrown 10 mph
relative to the car, and the
car is traveling 25 mph
down the road. If one child
doesn't catch the ball, and
it flies out the window, in
what direction does the
ball fly (ignoring wind
resistance)?

74. Two children are throwing
a ball back and forth
straight across the back
seat of a car. The ball is
being thrown 8 mph
relative to the car, and the
car is traveling 45 mph
down the road. If one child
doesn't catch the ball, and
it flies out the window, in
what direction does the
ball fly (ignoring wind
resistance)?

75. A 50-pound object rests on
a ramp that is inclined 19°.
Find the magnitude of the
components of the force
parallel to and
perpendicular to (normal)
the ramp to the nearest
tenth of a pound.

76. Suppose a body has a force
of 10 pounds acting on it to
the right, 25 pounds acting
on it upward, and 5 pounds
acting on it 45° from the
horizontal. What single
force is the resultant force
acting on the body?

77. Suppose a body has a force
of 10 pounds acting on it to
the right, 25 pounds acting
on it ─135° from the
horizontal, and 5 pounds
acting on it directed 150°
from the horizontal. What
single force is the resultant
force acting on the body?

78. The condition of
equilibrium is when the
sum of the forces acting on
a body is the zero vector.
Suppose a body has a force
of 2 pounds acting on it to
the right, 5 pounds acting
on it upward, and 3 pounds
acting on it 45° from the
horizontal. What single
force is needed to produce
a state of equilibrium on
the body?

79. Suppose a body has a force
of 3 pounds acting on it to
the left, 4 pounds acting on
it upward, and 2 pounds
acting on it 30° from the
horizontal. What single
force is needed to produce
a state of equilibrium on
the body? Draw the vector.

10.8 • Vectors 1015



Chapter Review
Key Terms
altitude a perpendicular line from one vertex of a triangle to the opposite side, or in the case of an obtuse triangle, to

the line containing the opposite side, forming two right triangles
ambiguous case a scenario in which more than one triangle is a valid solution for a given oblique SSA triangle
Archimedes’ spiral a polar curve given by When multiplied by a constant, the equation appears as As

the curve continues to widen in a spiral path over the domain.
argument the angle associated with a complex number; the angle between the line from the origin to the point and

the positive real axis
cardioid a member of the limaçon family of curves, named for its resemblance to a heart; its equation is given as

and where
convex limaҫon a type of one-loop limaçon represented by and such that
De Moivre’s Theorem formula used to find the power or nth roots of a complex number; states that, for a positive

integer is found by raising the modulus to the power and multiplying the angles by
dimpled limaҫon a type of one-loop limaçon represented by and such that
dot product given two vectors, the sum of the product of the horizontal components and the product of the vertical

components
Generalized Pythagorean Theorem an extension of the Law of Cosines; relates the sides of an oblique triangle and is

used for SAS and SSS triangles
initial point the origin of a vector
inner-loop limaçon a polar curve similar to the cardioid, but with an inner loop; passes through the pole twice;

represented by and where
Law of Cosines states that the square of any side of a triangle is equal to the sum of the squares of the other two sides

minus twice the product of the other two sides and the cosine of the included angle
Law of Sines states that the ratio of the measurement of one angle of a triangle to the length of its opposite side is

equal to the remaining two ratios of angle measure to opposite side; any pair of proportions may be used to solve for
a missing angle or side

lemniscate a polar curve resembling a figure 8 and given by the equation and
magnitude the length of a vector; may represent a quantity such as speed, and is calculated using the Pythagorean

Theorem
modulus the absolute value of a complex number, or the distance from the origin to the point also called the

amplitude
oblique triangle any triangle that is not a right triangle
one-loop limaҫon a polar curve represented by and such that and

may be dimpled or convex; does not pass through the pole
parameter a variable, often representing time, upon which and are both dependent
polar axis on the polar grid, the equivalent of the positive x-axis on the rectangular grid
polar coordinates on the polar grid, the coordinates of a point labeled where indicates the angle of rotation

from the polar axis and represents the radius, or the distance of the point from the pole in the direction of
polar equation an equation describing a curve on the polar grid.
polar form of a complex number a complex number expressed in terms of an angle and its distance from the origin

can be found by using conversion formulas and
pole the origin of the polar grid
resultant a vector that results from addition or subtraction of two vectors, or from scalar multiplication
rose curve a polar equation resembling a flower, given by the equations and when is even

there are petals, and the curve is highly symmetrical; when is odd there are petals.
scalar a quantity associated with magnitude but not direction; a constant
scalar multiplication the product of a constant and each component of a vector
standard position the placement of a vector with the initial point at and the terminal point represented by

the change in the x-coordinates and the change in the y-coordinates of the original vector
terminal point the end point of a vector, usually represented by an arrow indicating its direction
unit vector a vector that begins at the origin and has magnitude of 1; the horizontal unit vector runs along the x-axis

and is defined as the vertical unit vector runs along the y-axis and is defined as
vector a quantity associated with both magnitude and direction, represented as a directed line segment with a starting

point (initial point) and an end point (terminal point)
vector addition the sum of two vectors, found by adding corresponding components
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Key Equations

Law of Sines

Area for oblique triangles

Law of Cosines

Heron’s formula

Conversion formulas

Key Concepts
10.1 Non-right Triangles: Law of Sines

• The Law of Sines can be used to solve oblique triangles, which are non-right triangles.
• According to the Law of Sines, the ratio of the measurement of one of the angles to the length of its opposite side

equals the other two ratios of angle measure to opposite side.
• There are three possible cases: ASA, AAS, SSA. Depending on the information given, we can choose the appropriate

equation to find the requested solution. See Example 1.
• The ambiguous case arises when an oblique triangle can have different outcomes.
• There are three possible cases that arise from SSA arrangement—a single solution, two possible solutions, and no

solution. See Example 2 and Example 3.
• The Law of Sines can be used to solve triangles with given criteria. See Example 4.
• The general area formula for triangles translates to oblique triangles by first finding the appropriate height value.

See Example 5.
• There are many trigonometric applications. They can often be solved by first drawing a diagram of the given

information and then using the appropriate equation. See Example 6.

10.2 Non-right Triangles: Law of Cosines

• The Law of Cosines defines the relationship among angle measurements and lengths of sides in oblique triangles.
• The Generalized Pythagorean Theorem is the Law of Cosines for two cases of oblique triangles: SAS and SSS.

Dropping an imaginary perpendicular splits the oblique triangle into two right triangles or forms one right triangle,
which allows sides to be related and measurements to be calculated. See Example 1 and Example 2.

• The Law of Cosines is useful for many types of applied problems. The first step in solving such problems is generally
to draw a sketch of the problem presented. If the information given fits one of the three models (the three
equations), then apply the Law of Cosines to find a solution. See Example 3 and Example 4.

• Heron’s formula allows the calculation of area in oblique triangles. All three sides must be known to apply Heron’s
formula. See Example 5 and See Example 6.
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10.3 Polar Coordinates

• The polar grid is represented as a series of concentric circles radiating out from the pole, or origin.
• To plot a point in the form move in a counterclockwise direction from the polar axis by an angle of

and then extend a directed line segment from the pole the length of in the direction of If is negative, move in a
clockwise direction, and extend a directed line segment the length of in the direction of See Example 1.

• If is negative, extend the directed line segment in the opposite direction of See Example 2.
• To convert from polar coordinates to rectangular coordinates, use the formulas and See

Example 3 and Example 4.
• To convert from rectangular coordinates to polar coordinates, use one or more of the formulas:

and See Example 5.
• Transforming equations between polar and rectangular forms means making the appropriate substitutions based

on the available formulas, together with algebraic manipulations. See Example 6, Example 7, and Example 8.
• Using the appropriate substitutions makes it possible to rewrite a polar equation as a rectangular equation, and

then graph it in the rectangular plane. See Example 9, Example 10, and Example 11.

10.4 Polar Coordinates: Graphs

• It is easier to graph polar equations if we can test the equations for symmetry with respect to the line the
polar axis, or the pole.

• There are three symmetry tests that indicate whether the graph of a polar equation will exhibit symmetry. If an
equation fails a symmetry test, the graph may or may not exhibit symmetry. See Example 1.

• Polar equations may be graphed by making a table of values for and
• The maximum value of a polar equation is found by substituting the value that leads to the maximum value of the

trigonometric expression.
• The zeros of a polar equation are found by setting and solving for See Example 2.
• Some formulas that produce the graph of a circle in polar coordinates are given by and See

Example 3.
• The formulas that produce the graphs of a cardioid are given by and for

and See Example 4.
• The formulas that produce the graphs of a one-loop limaçon are given by and for

See Example 5.
• The formulas that produce the graphs of an inner-loop limaçon are given by and for

and See Example 6.
• The formulas that produce the graphs of a lemniscates are given by and where

See Example 7.
• The formulas that produce the graphs of rose curves are given by and where if is

even, there are petals, and if is odd, there are petals. See Example 8 and Example 9.
• The formula that produces the graph of an Archimedes’ spiral is given by See Example 10.

10.5 Polar Form of Complex Numbers

• Complex numbers in the form are plotted in the complex plane similar to the way rectangular coordinates are
plotted in the rectangular plane. Label the x-axis as the real axis and the y-axis as the imaginary axis. See Example 1.

• The absolute value of a complex number is the same as its magnitude. It is the distance from the origin to the point:
See Example 2 and Example 3.

• To write complex numbers in polar form, we use the formulas and Then,
See Example 4 and Example 5.

• To convert from polar form to rectangular form, first evaluate the trigonometric functions. Then, multiply through
by See Example 6 and Example 7.

• To find the product of two complex numbers, multiply the two moduli and add the two angles. Evaluate the
trigonometric functions, and multiply using the distributive property. See Example 8.

• To find the quotient of two complex numbers in polar form, find the quotient of the two moduli and the difference
of the two angles. See Example 9.

• To find the power of a complex number raise to the power and multiply by See Example 10.
• Finding the roots of a complex number is the same as raising a complex number to a power, but using a rational

exponent. See Example 11.
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10.6 Parametric Equations

• Parameterizing a curve involves translating a rectangular equation in two variables, and into two equations in
three variables, x, y, and t. Often, more information is obtained from a set of parametric equations. See Example 1,
Example 2, and Example 3.

• Sometimes equations are simpler to graph when written in rectangular form. By eliminating an equation in and
is the result.

• To eliminate solve one of the equations for and substitute the expression into the second equation. See
Example 4, Example 5, Example 6, and Example 7.

• Finding the rectangular equation for a curve defined parametrically is basically the same as eliminating the
parameter. Solve for in one of the equations, and substitute the expression into the second equation. See Example
8.

• There are an infinite number of ways to choose a set of parametric equations for a curve defined as a rectangular
equation.

• Find an expression for such that the domain of the set of parametric equations remains the same as the original
rectangular equation. See Example 9.

10.7 Parametric Equations: Graphs

• When there is a third variable, a third parameter on which and depend, parametric equations can be used.
• To graph parametric equations by plotting points, make a table with three columns labeled and Choose

values for in increasing order. Plot the last two columns for and See Example 1 and Example 2.
• When graphing a parametric curve by plotting points, note the associated t-values and show arrows on the graph

indicating the orientation of the curve. See Example 3 and Example 4.
• Parametric equations allow the direction or the orientation of the curve to be shown on the graph. Equations that

are not functions can be graphed and used in many applications involving motion. See Example 5.
• Projectile motion depends on two parametric equations: and Initial

velocity is symbolized as represents the initial angle of the object when thrown, and represents the height at
which the object is propelled.

10.8 Vectors

• The position vector has its initial point at the origin. See Example 1.
• If the position vector is the same for two vectors, they are equal. See Example 2.
• Vectors are defined by their magnitude and direction. See Example 3.
• If two vectors have the same magnitude and direction, they are equal. See Example 4.
• Vector addition and subtraction result in a new vector found by adding or subtracting corresponding elements. See

Example 5.
• Scalar multiplication is multiplying a vector by a constant. Only the magnitude changes; the direction stays the

same. See Example 6 and Example 7.
• Vectors are comprised of two components: the horizontal component along the positive x-axis, and the vertical

component along the positive y-axis. See Example 8.
• The unit vector in the same direction of any nonzero vector is found by dividing the vector by its magnitude.
• The magnitude of a vector in the rectangular coordinate system is See Example 9.
• In the rectangular coordinate system, unit vectors may be represented in terms of and where represents the

horizontal component and represents the vertical component. Then, v = ai + bj is a scalar multiple of by real
numbers See Example 10 and Example 11.

• Adding and subtracting vectors in terms of i and j consists of adding or subtracting corresponding coefficients of i
and corresponding coefficients of j. See Example 12.

• A vector v = ai + bj is written in terms of magnitude and direction as See Example 13.
• The dot product of two vectors is the product of the terms plus the product of the terms. See Example 14.
• We can use the dot product to find the angle between two vectors. Example 15 and Example 16.
• Dot products are useful for many types of physics applications. See Example 17.
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Exercises
Review Exercises
Non-right Triangles: Law of Sines

For the following exercises, assume is opposite side is opposite side and is opposite side Solve each triangle,
if possible. Round each answer to the nearest tenth.

1. 2. 3. Solve the triangle.

4. Find the area of the triangle. 5. A pilot is flying over a straight
highway. He determines the angles
of depression to two mileposts, 2.1
km apart, to be 25° and 49°, as
shown in Figure 1. Find the
distance of the plane from point
and the elevation of the plane.

Figure 1

Non-right Triangles: Law of Cosines
6. Solve the triangle, rounding

to the nearest tenth,
assuming is opposite side

is opposite side and
s opposite side

7. Solve the triangle in Figure
2, rounding to the nearest
tenth.

Figure 2

8. Find the area of a triangle
with sides of length 8.3, 6.6,
and 9.1.
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9. To find the distance between two
cities, a satellite calculates the
distances and angle shown in
Figure 3 (not to scale). Find the
distance between the cities. Round
answers to the nearest tenth.

Figure 3

Polar Coordinates
10. Plot the point with polar

coordinates
11. Plot the point with polar

coordinates
12. Convert to

rectangular coordinates.

13. Convert to
rectangular coordinates.

14. Convert to polar
coordinates.

15. Convert to polar
coordinates.

For the following exercises, convert the given Cartesian equation to a polar equation.

16. 17. 18.

For the following exercises, convert the given polar equation to a Cartesian equation.

19. 20.

For the following exercises, convert to rectangular form and graph.

21. 22.

Polar Coordinates: Graphs

For the following exercises, test each equation for symmetry.

23. 24. 25. Sketch a graph of the polar
equation
Label the axis intercepts.

26. Sketch a graph of the polar
equation

27. Sketch a graph of the polar
equation
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Polar Form of Complex Numbers

For the following exercises, find the absolute value of each complex number.

28. 29.

Write the complex number in polar form.

30. 31.

For the following exercises, convert the complex number from polar to rectangular form.

32. 33.

For the following exercises, find the product in polar form.

34. 35.

For the following exercises, find the quotient in polar form.

36. 37.

For the following exercises, find the powers of each complex number in polar form.

38. Find when 39. Find when

For the following exercises, evaluate each root.

40. Evaluate the cube root of
when

41. Evaluate the square root of
when

For the following exercises, plot the complex number in the complex plane.

42. 43.
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Parametric Equations

For the following exercises, eliminate the parameter to rewrite the parametric equation as a Cartesian equation.

44. 45. 46. Parameterize (write a
parametric equation for)
each Cartesian equation by
using and

for

47. Parameterize the line from
to so that the

line is at at
and at

Parametric Equations: Graphs

For the following exercises, make a table of values for each set of parametric equations, graph the equations, and
include an orientation; then write the Cartesian equation.

48. 49. 50.

ⓐ Find the parametric equations to model the
path of the ball.

ⓑ Where is the ball after 3 seconds?

ⓒ How long is the ball in the air?

51. A ball is launched with an initial velocity of 80 feet
per second at an angle of 40° to the horizontal.
The ball is released at a height of 4 feet above the
ground.

Vectors

For the following exercises, determine whether the two vectors, and are equal, where has an initial point and a
terminal point and has an initial point and a terminal point

52. and 53. and

For the following exercises, use the vectors and to evaluate the expression.

54. u − v 55. 2v − u + w

For the following exercises, find a unit vector in the same direction as the given vector.

56. a = 8i − 6j 57. b = −3i − j
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For the following exercises, find the magnitude and direction of the vector.

58. 59.

For the following exercises, calculate

60. u = −2i + j and v = 3i + 7j 61. u = i + 4j and v = 4i + 3j 62. Given v draw v,
2v, and v.

63. Given the vectors shown in Figure 4,
sketch u + v, u − v and 3v.

Figure 4

64. Given initial point
and terminal

point write
the vector in terms of
and Draw the points and
the vector on the graph.

Practice Test
1. Assume is opposite side

is opposite side and
is opposite side Solve the
triangle, if possible, and
round each answer to the
nearest tenth, given

2. Find the area of the triangle
in Figure 1. Round each
answer to the nearest tenth.

Figure 1

3. A pilot flies in a straight path
for 2 hours. He then makes
a course correction, heading
15° to the right of his
original course, and flies 1
hour in the new direction. If
he maintains a constant
speed of 575 miles per hour,
how far is he from his
starting position?

4. Convert to polar
coordinates, and then plot
the point.

5. Convert to
rectangular coordinates.

6. Convert the polar equation
to a Cartesian equation:

7. Convert to rectangular form
and graph:

8. Test the equation for
symmetry:

9. Graph

10. Graph 11. Find the absolute value of
the complex number

12. Write the complex number
in polar form:
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13. Convert the complex
number from polar to
rectangular form:

Given and evaluate each expression.

14. 15. 16.

17. 18. Plot the complex number
in the complex

plane.

19. Eliminate the parameter
to rewrite the following
parametric equations as a
Cartesian equation:

20. Parameterize (write a
parametric equation for)
the following Cartesian
equation by using

and

21. Graph the set of
parametric equations and
find the Cartesian
equation:

ⓐ Find the parametric
equations to model the
path of the ball.

ⓑ Where is the ball after 2
seconds?

ⓒ How long is the ball in
the air?

22. A ball is launched with an
initial velocity of 95 feet per
second at an angle of 52°
to the horizontal. The ball
is released at a height of
3.5 feet above the ground.

For the following exercises, use the vectors u = i − 3j and v = 2i + 3j.

23. Find 2u − 3v. 24. Calculate 25. Find a unit vector in the
same direction as

26. Given vector has an initial
point and
terminal point

write the
vector in terms of and
On the graph, draw and
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The rings of Saturn have produced wonder, as well as misunderstanding, since Galileo first discovered them (he initially
thought they were moons). Though they appear to be a series of solid discs even in this 2004 closeup from the Cassini
probe, 19th century mathematicians proved that they are made up of billions of small objects clustered together. (credit:
modificaion of "Saturn" by NASA/JPL-Caltech/SSI/Kevin M. Gill/flickr)

Chapter Outline
12.1 The Ellipse
12.2 The Hyperbola
12.3 The Parabola
12.4 Rotation of Axes
12.5 Conic Sections in Polar Coordinates

Introduction to Analytic Geometry
The Greek mathematician Menaechmus (c. 380–c. 320 BCE) is generally credited with discovering the shapes formed by
the intersection of a plane and a right circular cone. Depending on how he tilted the plane when it intersected the cone,
he formed different shapes at the intersection–beautiful shapes with near-perfect symmetry.

It was also said that Aristotle may have had an intuitive understanding of these shapes, as he observed the orbit of the
planet to be circular. He presumed that the planets moved in circular orbits around Earth, and for nearly 2000 years this
was the commonly held belief.

It was not until the Renaissance movement that Johannes Kepler noticed that the orbits of the planet were not circular in
nature. His published law of planetary motion in the 1600s changed our view of the solar system forever. He claimed that
the sun was at one end of the orbits, and the planets revolved around the sun in an oval-shaped path.

Other objects in the solar system (and perhaps other systems) follow a similar elliptical path, including the spectacular
rings of Saturn. Using this understanding as a basis, 19th century mathematicians like James Clerk Maxwell and Sofya
Kovalevskaya showed that despite their appearance through the telescopes of the day (and even in current telescopes),
the rings are not solid and continuous, but are rather composed of small particles. Even after the Voyager and Cassini
missions have provided close-up and detailed data regarding the ring structures, full understanding of their construction
relies heavily on mathematical analysis. Of particular interest are the influences of Saturn's moons and moonlets, and
the ways they both disrupt and preserve the ring structure.

In this chapter, we will investigate the two-dimensional figures that are formed when a right circular cone is intersected
by a plane. We will begin by studying each of three figures created in this manner. We will develop defining equations for
each figure and then learn how to use these equations to solve a variety of problems.

ANALYTIC GEOMETRY12
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12.1 The Ellipse
Learning Objectives
In this section, you will:

Write equations of ellipses in standard form.
Graph ellipses centered at the origin.
Graph ellipses not centered at the origin.
Solve applied problems involving ellipses.

Figure 1 The National Statuary Hall in Washington, D.C. (credit: Greg Palmer, Flickr)

Can you imagine standing at one end of a large room and still being able to hear a whisper from a person standing at
the other end? The National Statuary Hall in Washington, D.C., shown in Figure 1, is such a room.1 It is an semi-circular
room called a whispering chamber because the shape makes it possible for sound to travel along the walls and dome. In
this section, we will investigate the shape of this room and its real-world applications, including how far apart two people
in Statuary Hall can stand and still hear each other whisper.

Writing Equations of Ellipses in Standard Form
A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the
plane intersects the cone determines the shape, as shown in Figure 2.

Figure 2

Conic sections can also be described by a set of points in the coordinate plane. Later in this chapter, we will see that the
graph of any quadratic equation in two variables is a conic section. The signs of the equations and the coefficients of the
variable terms determine the shape. This section focuses on the four variations of the standard form of the equation for
the ellipse. An ellipse is the set of all points in a plane such that the sum of their distances from two fixed points is
a constant. Each fixed point is called a focus (plural: foci).

1 Architect of the Capitol. http://www.aoc.gov. Accessed April 15, 2014.
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We can draw an ellipse using a piece of cardboard, two thumbtacks, a pencil, and string. Place the thumbtacks in the
cardboard to form the foci of the ellipse. Cut a piece of string longer than the distance between the two thumbtacks (the
length of the string represents the constant in the definition). Tack each end of the string to the cardboard, and trace a
curve with a pencil held taut against the string. The result is an ellipse. See Figure 3.

Figure 3

Every ellipse has two axes of symmetry. The longer axis is called the major axis, and the shorter axis is called the minor
axis. Each endpoint of the major axis is the vertex of the ellipse (plural: vertices), and each endpoint of the minor axis is
a co-vertex of the ellipse. The center of an ellipse is the midpoint of both the major and minor axes. The axes are
perpendicular at the center. The foci always lie on the major axis, and the sum of the distances from the foci to any point
on the ellipse (the constant sum) is greater than the distance between the foci. See Figure 4.

Figure 4

In this section, we restrict ellipses to those that are positioned vertically or horizontally in the coordinate plane. That is,
the axes will either lie on or be parallel to the x- and y-axes. Later in the chapter, we will see ellipses that are rotated in
the coordinate plane.

To work with horizontal and vertical ellipses in the coordinate plane, we consider two cases: those that are centered at
the origin and those that are centered at a point other than the origin. First we will learn to derive the equations of
ellipses, and then we will learn how to write the equations of ellipses in standard form. Later we will use what we learn to
draw the graphs.

Deriving the Equation of an Ellipse Centered at the Origin
To derive the equation of an ellipse centered at the origin, we begin with the foci and The ellipse is the set
of all points such that the sum of the distances from to the foci is constant, as shown in Figure 5.
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Figure 5

If is a vertex of the ellipse, the distance from to is The distance from to is
. The sum of the distances from the foci to the vertex is

If is a point on the ellipse, then we can define the following variables:

By the definition of an ellipse, is constant for any point on the ellipse. We know that the sum of these
distances is for the vertex It follows that for any point on the ellipse. We will begin the derivation
by applying the distance formula. The rest of the derivation is algebraic.

Thus, the standard equation of an ellipse is This equation defines an ellipse centered at the origin. If

the ellipse is stretched further in the horizontal direction, and if the ellipse is stretched further in the
vertical direction.

Writing Equations of Ellipses Centered at the Origin in Standard Form
Standard forms of equations tell us about key features of graphs. Take a moment to recall some of the standard forms of
equations we’ve worked with in the past: linear, quadratic, cubic, exponential, logarithmic, and so on. By learning to
interpret standard forms of equations, we are bridging the relationship between algebraic and geometric
representations of mathematical phenomena.
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The key features of the ellipse are its center, vertices, co-vertices, foci, and lengths and positions of the major and minor
axes. Just as with other equations, we can identify all of these features just by looking at the standard form of the
equation. There are four variations of the standard form of the ellipse. These variations are categorized first by the
location of the center (the origin or not the origin), and then by the position (horizontal or vertical). Each is presented
along with a description of how the parts of the equation relate to the graph. Interpreting these parts allows us to form
a mental picture of the ellipse.

Standard Forms of the Equation of an Ellipse with Center (0,0)

The standard form of the equation of an ellipse with center and major axis on the x-axis is

where

•
• the length of the major axis is
• the coordinates of the vertices are
• the length of the minor axis is
• the coordinates of the co-vertices are
• the coordinates of the foci are , where See Figure 6 a

The standard form of the equation of an ellipse with center and major axis on the y-axis is

where

•
• the length of the major axis is
• the coordinates of the vertices are
• the length of the minor axis is
• the coordinates of the co-vertices are
• the coordinates of the foci are , where See Figure 6 b

Note that the vertices, co-vertices, and foci are related by the equation When we are given the
coordinates of the foci and vertices of an ellipse, we can use this relationship to find the equation of the ellipse in
standard form.

Figure 6 (a) Horizontal ellipse with center (b) Vertical ellipse with center
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HOW TO

Given the vertices and foci of an ellipse centered at the origin, write its equation in standard form.

1. Determine whether the major axis lies on the x- or y-axis.
a. If the given coordinates of the vertices and foci have the form and respectively, then the

major axis is the x-axis. Use the standard form

b. If the given coordinates of the vertices and foci have the form and respectively, then the

major axis is the y-axis. Use the standard form

2. Use the equation along with the given coordinates of the vertices and foci, to solve for
3. Substitute the values for and into the standard form of the equation determined in Step 1.

EXAMPLE 1

Writing the Equation of an Ellipse Centered at the Origin in Standard Form
What is the standard form equation of the ellipse that has vertices and foci

Solution
The foci are on the x-axis, so the major axis is the x-axis. Thus, the equation will have the form

The vertices are so and

The foci are so and

We know that the vertices and foci are related by the equation Solving for we have:

Now we need only substitute and into the standard form of the equation. The equation of the ellipse is

TRY IT #1 What is the standard form equation of the ellipse that has vertices and foci

Q&A Can we write the equation of an ellipse centered at the origin given coordinates of just one focus
and vertex?

Yes. Ellipses are symmetrical, so the coordinates of the vertices of an ellipse centered around the origin
will always have the form or Similarly, the coordinates of the foci will always have the
form or Knowing this, we can use and from the given points, along with the equation

to find

Writing Equations of Ellipses Not Centered at the Origin
Like the graphs of other equations, the graph of an ellipse can be translated. If an ellipse is translated units
horizontally and units vertically, the center of the ellipse will be This translation results in the standard form of
the equation we saw previously, with replaced by and y replaced by
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Standard Forms of the Equation of an Ellipse with Center (h, k)

The standard form of the equation of an ellipse with center and major axis parallel to the x-axis is

where

•
• the length of the major axis is
• the coordinates of the vertices are
• the length of the minor axis is
• the coordinates of the co-vertices are
• the coordinates of the foci are where See Figure 7a

The standard form of the equation of an ellipse with center and major axis parallel to the y-axis is

where

•
• the length of the major axis is
• the coordinates of the vertices are
• the length of the minor axis is
• the coordinates of the co-vertices are
• the coordinates of the foci are where See Figure 7b

Just as with ellipses centered at the origin, ellipses that are centered at a point have vertices, co-vertices, and
foci that are related by the equation We can use this relationship along with the midpoint and distance
formulas to find the equation of the ellipse in standard form when the vertices and foci are given.

Figure 7 (a) Horizontal ellipse with center (b) Vertical ellipse with center

HOW TO

Given the vertices and foci of an ellipse not centered at the origin, write its equation in standard form.

1. Determine whether the major axis is parallel to the x- or y-axis.
a. If the y-coordinates of the given vertices and foci are the same, then the major axis is parallel to the x-axis.
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Use the standard form

b. If the x-coordinates of the given vertices and foci are the same, then the major axis is parallel to the y-axis.

Use the standard form

2. Identify the center of the ellipse using the midpoint formula and the given coordinates for the vertices.
3. Find by solving for the length of the major axis, which is the distance between the given vertices.
4. Find using and found in Step 2, along with the given coordinates for the foci.
5. Solve for using the equation
6. Substitute the values for and into the standard form of the equation determined in Step 1.

EXAMPLE 2

Writing the Equation of an Ellipse Centered at a Point Other Than the Origin
What is the standard form equation of the ellipse that has vertices and

and foci and

Solution
The x-coordinates of the vertices and foci are the same, so the major axis is parallel to the y-axis. Thus, the equation of
the ellipse will have the form

First, we identify the center, The center is halfway between the vertices, and Applying the
midpoint formula, we have:

Next, we find The length of the major axis, is bounded by the vertices. We solve for by finding the distance
between the y-coordinates of the vertices.

So

Now we find The foci are given by So, and We substitute
using either of these points to solve for

So

Next, we solve for using the equation

Finally, we substitute the values found for and into the standard form equation for an ellipse:

1154 12 • Analytic Geometry

Access for free at openstax.org



...

TRY IT #2 What is the standard form equation of the ellipse that has vertices and and foci

and

Graphing Ellipses Centered at the Origin
Just as we can write the equation for an ellipse given its graph, we can graph an ellipse given its equation. To graph

ellipses centered at the origin, we use the standard form for horizontal ellipses and

for vertical ellipses.

HOW TO

Given the standard form of an equation for an ellipse centered at sketch the graph.

1. Use the standard forms of the equations of an ellipse to determine the major axis, vertices, co-vertices, and foci.

a. If the equation is in the form where then

▪ the major axis is the x-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are

b. If the equation is in the form where then

▪ the major axis is the y-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are

2. Solve for using the equation
3. Plot the center, vertices, co-vertices, and foci in the coordinate plane, and draw a smooth curve to form the

ellipse.

EXAMPLE 3

Graphing an Ellipse Centered at the Origin

Graph the ellipse given by the equation, Identify and label the center, vertices, co-vertices, and foci.

Solution
First, we determine the position of the major axis. Because the major axis is on the y-axis. Therefore, the

equation is in the form where and It follows that:

• the center of the ellipse is

• the coordinates of the vertices are

• the coordinates of the co-vertices are

• the coordinates of the foci are where Solving for we have:

Therefore, the coordinates of the foci are
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Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse. See Figure
8.

Figure 8

TRY IT #3 Graph the ellipse given by the equation Identify and label the center, vertices, co-

vertices, and foci.

EXAMPLE 4

Graphing an Ellipse Centered at the Origin from an Equation Not in Standard Form
Graph the ellipse given by the equation Rewrite the equation in standard form. Then identify and
label the center, vertices, co-vertices, and foci.

Solution
First, use algebra to rewrite the equation in standard form.

Next, we determine the position of the major axis. Because the major axis is on the x-axis. Therefore, the

equation is in the form where and It follows that:

• the center of the ellipse is

• the coordinates of the vertices are

• the coordinates of the co-vertices are

• the coordinates of the foci are where Solving for we have:

Therefore the coordinates of the foci are

Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse.
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Figure 9

TRY IT #4 Graph the ellipse given by the equation Rewrite the equation in standard
form. Then identify and label the center, vertices, co-vertices, and foci.

Graphing Ellipses Not Centered at the Origin
When an ellipse is not centered at the origin, we can still use the standard forms to find the key features of the graph.

When the ellipse is centered at some point, we use the standard forms for horizontal

ellipses and for vertical ellipses. From these standard equations, we can easily determine

the center, vertices, co-vertices, foci, and positions of the major and minor axes.

HOW TO

Given the standard form of an equation for an ellipse centered at sketch the graph.

1. Use the standard forms of the equations of an ellipse to determine the center, position of the major axis,
vertices, co-vertices, and foci.

a. If the equation is in the form where then

▪ the center is
▪ the major axis is parallel to the x-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are

b. If the equation is in the form where then

▪ the center is
▪ the major axis is parallel to the y-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are

2. Solve for using the equation
3. Plot the center, vertices, co-vertices, and foci in the coordinate plane, and draw a smooth curve to form the

ellipse.

EXAMPLE 5

Graphing an Ellipse Centered at (h, k)

Graph the ellipse given by the equation, Identify and label the center, vertices, co-vertices, and foci.

12.1 • The Ellipse 1157



...

Solution
First, we determine the position of the major axis. Because the major axis is parallel to the y-axis. Therefore, the

equation is in the form where and It follows that:

• the center of the ellipse is
• the coordinates of the vertices are or and
• the coordinates of the co-vertices are or and
• the coordinates of the foci are where Solving for we have:

Therefore, the coordinates of the foci are and

Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse.

Figure 10

TRY IT #5 Graph the ellipse given by the equation Identify and label the center,

vertices, co-vertices, and foci.

HOW TO

Given the general form of an equation for an ellipse centered at (h, k), express the equation in standard form.

1. Recognize that an ellipse described by an equation in the form is in general form.
2. Rearrange the equation by grouping terms that contain the same variable. Move the constant term to the

opposite side of the equation.
3. Factor out the coefficients of the and terms in preparation for completing the square.
4. Complete the square for each variable to rewrite the equation in the form of the sum of multiples of two

binomials squared set equal to a constant, where and are constants.
5. Divide both sides of the equation by the constant term to express the equation in standard form.

EXAMPLE 6

Graphing an Ellipse Centered at (h, k) by First Writing It in Standard Form
Graph the ellipse given by the equation Identify and label the center, vertices, co-
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vertices, and foci.

Solution
We must begin by rewriting the equation in standard form.

Group terms that contain the same variable, and move the constant to the opposite side of the equation.

Factor out the coefficients of the squared terms.

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

Rewrite as perfect squares.

Divide both sides by the constant term to place the equation in standard form.

Now that the equation is in standard form, we can determine the position of the major axis. Because the major

axis is parallel to the x-axis. Therefore, the equation is in the form where and It

follows that:

• the center of the ellipse is

• the coordinates of the vertices are or and

• the coordinates of the co-vertices are or and

• the coordinates of the foci are where Solving for we have:

Therefore, the coordinates of the foci are and

Next we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse as shown in
Figure 11.

Figure 11

TRY IT #6 Express the equation of the ellipse given in standard form. Identify the center, vertices, co-
vertices, and foci of the ellipse.
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Solving Applied Problems Involving Ellipses
Many real-world situations can be represented by ellipses, including orbits of planets, satellites, moons and comets, and
shapes of boat keels, rudders, and some airplane wings. A medical device called a lithotripter uses elliptical reflectors to
break up kidney stones by generating sound waves. Some buildings, called whispering chambers, are designed with
elliptical domes so that a person whispering at one focus can easily be heard by someone standing at the other focus.
This occurs because of the acoustic properties of an ellipse. When a sound wave originates at one focus of a whispering
chamber, the sound wave will be reflected off the elliptical dome and back to the other focus. See Figure 12. In the
whisper chamber at the Museum of Science and Industry in Chicago, two people standing at the foci—about 43 feet
apart—can hear each other whisper. When these chambers are placed in unexpected places, such as the ones inside
Bush International Airport in Houston and Grand Central Terminal in New York City, they can induce surprised reactions
among travelers.

Figure 12 Sound waves are reflected between foci in an elliptical room, called a whispering chamber.

EXAMPLE 7

Locating the Foci of a Whispering Chamber
A large room in an art gallery is a whispering chamber. Its dimensions are 46 feet wide by 96 feet long as shown in
Figure 13.

a. What is the standard form of the equation of the ellipse representing the outline of the room? Hint: assume a
horizontal ellipse, and let the center of the room be the point

b. If two visitors standing at the foci of this room can hear each other whisper, how far apart are the two visitors?
Round to the nearest foot.

Figure 13

Solution

a. We are assuming a horizontal ellipse with center so we need to find an equation of the form

where We know that the length of the major axis, is longer than the length of the minor axis, So the
length of the room, 96, is represented by the major axis, and the width of the room, 46, is represented by the minor
axis.
◦ Solving for we have so and
◦ Solving for we have so and

Therefore, the equation of the ellipse is

b. To find the distance between the senators, we must find the distance between the foci, where

1160 12 • Analytic Geometry

Access for free at openstax.org



Solving for we have:

The points represent the foci. Thus, the distance between the senators is feet.

TRY IT #7 Suppose a whispering chamber is 480 feet long and 320 feet wide.

ⓐ What is the standard form of the equation of the ellipse representing the room? Hint: assume
a horizontal ellipse, and let the center of the room be the point

ⓑ If two people are standing at the foci of this room and can hear each other whisper, how far
apart are the people? Round to the nearest foot.

MEDIA

Access these online resources for additional instruction and practice with ellipses.

Conic Sections: The Ellipse (http://openstax.org/l/conicellipse)
Graph an Ellipse with Center at the Origin (http://openstax.org/l/grphellorigin)
Graph an Ellipse with Center Not at the Origin (http://openstax.org/l/grphellnot)

12.1 SECTION EXERCISES
Verbal

1. Define an ellipse in terms of
its foci.

2. Where must the foci of an
ellipse lie?

3. What special case of the
ellipse do we have when the
major and minor axis are of
the same length?

4. For the special case
mentioned in the previous
question, what would be
true about the foci of that
ellipse?

5. What can be said about the
symmetry of the graph of an
ellipse with center at the
origin and foci along the
y-axis?

Algebraic

For the following exercises, determine whether the given equations represent ellipses. If yes, write in standard form.

6. 7. 8.

9. 10.
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For the following exercises, write the equation of an ellipse in standard form, and identify the end points of the major
and minor axes as well as the foci.

11. 12. 13.

14. 15. 16.

17. 18. 19.

20. 21.

22. 23.

24. 25.

26.

For the following exercises, find the foci for the given ellipses.

27. 28. 29.

30. 31.

Graphical

For the following exercises, graph the given ellipses, noting center, vertices, and foci.

32. 33. 34.

35. 36. 37.

38. 39. 40.

41. 42.

43. 44.

45.
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For the following exercises, use the given information about the graph of each ellipse to determine its equation.

46. Center at the origin,
symmetric with respect to
the x- and y-axes, focus at

and point on graph

47. Center at the origin,
symmetric with respect to
the x- and y-axes, focus at

and point on graph

48. Center at the origin,
symmetric with respect to
the x- and y-axes, focus at

and major axis is
twice as long as minor axis.

49. Center ; vertex ;

one focus: .

50. Center ; vertex

; one focus:

51. Center ; vertex
; one focus:

For the following exercises, given the graph of the ellipse, determine its equation.

52. 53. 54.

55. 56.

Extensions

For the following exercises, find the area of the ellipse. The area of an ellipse is given by the formula

57. 58. 59.

60. 61.
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Real-World Applications

62. Find the equation of the
ellipse that will just fit
inside a box that is 8 units
wide and 4 units high.

63. Find the equation of the
ellipse that will just fit
inside a box that is four
times as wide as it is high.
Express in terms of the
height.

64. An arch has the shape of a
semi-ellipse (the top half of
an ellipse). The arch has a
height of 8 feet and a span
of 20 feet. Find an equation
for the ellipse, and use that
to find the height to the
nearest 0.01 foot of the
arch at a distance of 4 feet
from the center.

65. An arch has the shape of a
semi-ellipse. The arch has a
height of 12 feet and a
span of 40 feet. Find an
equation for the ellipse,
and use that to find the
distance from the center to
a point at which the height
is 6 feet. Round to the
nearest hundredth.

66. A bridge is to be built in the
shape of a semi-elliptical
arch and is to have a span
of 120 feet. The height of
the arch at a distance of 40
feet from the center is to
be 8 feet. Find the height of
the arch at its center.

67. A person in a whispering
gallery standing at one
focus of the ellipse can
whisper and be heard by a
person standing at the
other focus because all the
sound waves that reach the
ceiling are reflected to the
other person. If a
whispering gallery has a
length of 120 feet, and the
foci are located 30 feet
from the center, find the
height of the ceiling at the
center.

68. A person is standing 8 feet
from the nearest wall in a
whispering gallery. If that
person is at one focus, and
the other focus is 80 feet
away, what is the length
and height at the center of
the gallery?

12.2 The Hyperbola
Learning Objectives
In this section, you will:

Locate a hyperbola’s vertices and foci.
Write equations of hyperbolas in standard form.
Graph hyperbolas centered at the origin.
Graph hyperbolas not centered at the origin.
Solve applied problems involving hyperbolas.

What do paths of comets, supersonic booms, ancient Grecian pillars, and natural draft cooling towers have in common?
They can all be modeled by the same type of conic. For instance, when something moves faster than the speed of sound,
a shock wave in the form of a cone is created. A portion of a conic is formed when the wave intersects the ground,
resulting in a sonic boom. See Figure 1.
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Figure 1 A shock wave intersecting the ground forms a portion of a conic and results in a sonic boom.

Most people are familiar with the sonic boom created by supersonic aircraft, but humans were breaking the sound
barrier long before the first supersonic flight. The crack of a whip occurs because the tip is exceeding the speed of
sound. The bullets shot from many firearms also break the sound barrier, although the bang of the gun usually
supersedes the sound of the sonic boom.

Locating the Vertices and Foci of a Hyperbola
In analytic geometry, a hyperbola is a conic section formed by intersecting a right circular cone with a plane at an angle
such that both halves of the cone are intersected. This intersection produces two separate unbounded curves that are
mirror images of each other. See Figure 2.

Figure 2 A hyperbola

Like the ellipse, the hyperbola can also be defined as a set of points in the coordinate plane. A hyperbola is the set of all
points in a plane such that the difference of the distances between and the foci is a positive constant.

Notice that the definition of a hyperbola is very similar to that of an ellipse. The distinction is that the hyperbola is
defined in terms of the difference of two distances, whereas the ellipse is defined in terms of the sum of two distances.

As with the ellipse, every hyperbola has two axes of symmetry. The transverse axis is a line segment that passes
through the center of the hyperbola and has vertices as its endpoints. The foci lie on the line that contains the transverse
axis. The conjugate axis is perpendicular to the transverse axis and has the co-vertices as its endpoints. The center of a
hyperbola is the midpoint of both the transverse and conjugate axes, where they intersect. Every hyperbola also has
two asymptotes that pass through its center. As a hyperbola recedes from the center, its branches approach these
asymptotes. The central rectangle of the hyperbola is centered at the origin with sides that pass through each vertex
and co-vertex; it is a useful tool for graphing the hyperbola and its asymptotes. To sketch the asymptotes of the
hyperbola, simply sketch and extend the diagonals of the central rectangle. See Figure 3.
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Figure 3 Key features of the hyperbola

In this section, we will limit our discussion to hyperbolas that are positioned vertically or horizontally in the coordinate
plane; the axes will either lie on or be parallel to the x- and y-axes. We will consider two cases: those that are centered at
the origin, and those that are centered at a point other than the origin.

Deriving the Equation of a Hyperbola Centered at the Origin
Let and be the foci of a hyperbola centered at the origin. The hyperbola is the set of all points such
that the difference of the distances from to the foci is constant. See Figure 4.

Figure 4

If is a vertex of the hyperbola, the distance from to is The distance from to
is The difference of the distances from the foci to the vertex is

If is a point on the hyperbola, we can define the following variables:

By definition of a hyperbola, is constant for any point on the hyperbola. We know that the difference of
these distances is for the vertex It follows that for any point on the hyperbola. As with the
derivation of the equation of an ellipse, we will begin by applying the distance formula. The rest of the derivation is
algebraic. Compare this derivation with the one from the previous section for ellipses.
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This equation defines a hyperbola centered at the origin with vertices and co-vertices

Standard Forms of the Equation of a Hyperbola with Center (0,0)

The standard form of the equation of a hyperbola with center and transverse axis on the x-axis is

where

• the length of the transverse axis is
• the coordinates of the vertices are
• the length of the conjugate axis is
• the coordinates of the co-vertices are
• the distance between the foci is where
• the coordinates of the foci are
• the equations of the asymptotes are

See Figure 5a.

The standard form of the equation of a hyperbola with center and transverse axis on the y-axis is

where

• the length of the transverse axis is
• the coordinates of the vertices are
• the length of the conjugate axis is
• the coordinates of the co-vertices are
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• the distance between the foci is where
• the coordinates of the foci are
• the equations of the asymptotes are

See Figure 5b.

Note that the vertices, co-vertices, and foci are related by the equation When we are given the equation
of a hyperbola, we can use this relationship to identify its vertices and foci.

Figure 5 (a) Horizontal hyperbola with center (b) Vertical hyperbola with center

HOW TO

Given the equation of a hyperbola in standard form, locate its vertices and foci.

1. Determine whether the transverse axis lies on the x- or y-axis. Notice that is always under the variable with
the positive coefficient. So, if you set the other variable equal to zero, you can easily find the intercepts. In the
case where the hyperbola is centered at the origin, the intercepts coincide with the vertices.

a. If the equation has the form then the transverse axis lies on the x-axis. The vertices are

located at and the foci are located at

b. If the equation has the form then the transverse axis lies on the y-axis. The vertices are

located at and the foci are located at

2. Solve for using the equation
3. Solve for using the equation

EXAMPLE 1

Locating a Hyperbola’s Vertices and Foci

Identify the vertices and foci of the hyperbola with equation

Solution

The equation has the form so the transverse axis lies on the y-axis. The hyperbola is centered at the
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origin, so the vertices serve as the y-intercepts of the graph. To find the vertices, set and solve for

The foci are located at Solving for

Therefore, the vertices are located at and the foci are located at

TRY IT #1 Identify the vertices and foci of the hyperbola with equation

Writing Equations of Hyperbolas in Standard Form
Just as with ellipses, writing the equation for a hyperbola in standard form allows us to calculate the key features: its
center, vertices, co-vertices, foci, asymptotes, and the lengths and positions of the transverse and conjugate axes.
Conversely, an equation for a hyperbola can be found given its key features. We begin by finding standard equations for
hyperbolas centered at the origin. Then we will turn our attention to finding standard equations for hyperbolas centered
at some point other than the origin.

Hyperbolas Centered at the Origin
Reviewing the standard forms given for hyperbolas centered at we see that the vertices, co-vertices, and foci are
related by the equation Note that this equation can also be rewritten as This relationship is
used to write the equation for a hyperbola when given the coordinates of its foci and vertices.

HOW TO

Given the vertices and foci of a hyperbola centered at write its equation in standard form.

1. Determine whether the transverse axis lies on the x- or y-axis.
a. If the given coordinates of the vertices and foci have the form and respectively, then the

transverse axis is the x-axis. Use the standard form

b. If the given coordinates of the vertices and foci have the form and respectively, then the

transverse axis is the y-axis. Use the standard form

2. Find using the equation
3. Substitute the values for and into the standard form of the equation determined in Step 1.

EXAMPLE 2

Finding the Equation of a Hyperbola Centered at (0,0) Given its Foci and Vertices

What is the standard form equation of the hyperbola that has vertices and foci

Solution

The vertices and foci are on the x-axis. Thus, the equation for the hyperbola will have the form

The vertices are so and
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The foci are so and

Solving for we have

Finally, we substitute and into the standard form of the equation, The equation of the

hyperbola is as shown in Figure 6.

Figure 6

TRY IT #2 What is the standard form equation of the hyperbola that has vertices and foci

Hyperbolas Not Centered at the Origin
Like the graphs for other equations, the graph of a hyperbola can be translated. If a hyperbola is translated units
horizontally and units vertically, the center of the hyperbola will be This translation results in the standard form
of the equation we saw previously, with replaced by and replaced by

Standard Forms of the Equation of a Hyperbola with Center (h, k)

The standard form of the equation of a hyperbola with center and transverse axis parallel to the x-axis is

where

• the length of the transverse axis is
• the coordinates of the vertices are
• the length of the conjugate axis is
• the coordinates of the co-vertices are
• the distance between the foci is where
• the coordinates of the foci are

The asymptotes of the hyperbola coincide with the diagonals of the central rectangle. The length of the rectangle is
and its width is The slopes of the diagonals are and each diagonal passes through the center Using

the point-slope formula, it is simple to show that the equations of the asymptotes are See Figure
7a
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The standard form of the equation of a hyperbola with center and transverse axis parallel to the y-axis is

where

• the length of the transverse axis is
• the coordinates of the vertices are
• the length of the conjugate axis is
• the coordinates of the co-vertices are
• the distance between the foci is where
• the coordinates of the foci are

Using the reasoning above, the equations of the asymptotes are See Figure 7b.

Figure 7 (a) Horizontal hyperbola with center (b) Vertical hyperbola with center

Like hyperbolas centered at the origin, hyperbolas centered at a point have vertices, co-vertices, and foci that are
related by the equation We can use this relationship along with the midpoint and distance formulas to find
the standard equation of a hyperbola when the vertices and foci are given.

HOW TO

Given the vertices and foci of a hyperbola centered at write its equation in standard form.

1. Determine whether the transverse axis is parallel to the x- or y-axis.
a. If the y-coordinates of the given vertices and foci are the same, then the transverse axis is parallel to the

x-axis. Use the standard form

b. If the x-coordinates of the given vertices and foci are the same, then the transverse axis is parallel to the

y-axis. Use the standard form

2. Identify the center of the hyperbola, using the midpoint formula and the given coordinates for the
vertices.

3. Find by solving for the length of the transverse axis, , which is the distance between the given vertices.
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4. Find using and found in Step 2 along with the given coordinates for the foci.
5. Solve for using the equation
6. Substitute the values for and into the standard form of the equation determined in Step 1.

EXAMPLE 3

Finding the Equation of a Hyperbola Centered at (h, k) Given its Foci and Vertices
What is the standard form equation of the hyperbola that has vertices at and and foci at and

Solution
The y-coordinates of the vertices and foci are the same, so the transverse axis is parallel to the x-axis. Thus, the equation
of the hyperbola will have the form

First, we identify the center, The center is halfway between the vertices and Applying the midpoint
formula, we have

Next, we find The length of the transverse axis, is bounded by the vertices. So, we can find by finding the
distance between the x-coordinates of the vertices.

Now we need to find The coordinates of the foci are So and We
can use the x-coordinate from either of these points to solve for Using the point and substituting

Next, solve for using the equation

Finally, substitute the values found for and into the standard form of the equation.

TRY IT #3 What is the standard form equation of the hyperbola that has vertices and and foci
and

Graphing Hyperbolas Centered at the Origin
When we have an equation in standard form for a hyperbola centered at the origin, we can interpret its parts to identify
the key features of its graph: the center, vertices, co-vertices, asymptotes, foci, and lengths and positions of the

transverse and conjugate axes. To graph hyperbolas centered at the origin, we use the standard form for
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horizontal hyperbolas and the standard form for vertical hyperbolas.

HOW TO

Given a standard form equation for a hyperbola centered at sketch the graph.

1. Determine which of the standard forms applies to the given equation.
2. Use the standard form identified in Step 1 to determine the position of the transverse axis; coordinates for the

vertices, co-vertices, and foci; and the equations for the asymptotes.

a. If the equation is in the form then

▪ the transverse axis is on the x-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are
▪ the equations of the asymptotes are

b. If the equation is in the form then

▪ the transverse axis is on the y-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are
▪ the equations of the asymptotes are

3. Solve for the coordinates of the foci using the equation
4. Plot the vertices, co-vertices, foci, and asymptotes in the coordinate plane, and draw a smooth curve to form the

hyperbola.

EXAMPLE 4

Graphing a Hyperbola Centered at (0, 0) Given an Equation in Standard Form

Graph the hyperbola given by the equation Identify and label the vertices, co-vertices, foci, and
asymptotes.

Solution

The standard form that applies to the given equation is Thus, the transverse axis is on the y-axis

The coordinates of the vertices are

The coordinates of the co-vertices are

The coordinates of the foci are where Solving for we have

Therefore, the coordinates of the foci are

The equations of the asymptotes are

Plot and label the vertices and co-vertices, and then sketch the central rectangle. Sides of the rectangle are parallel to the
axes and pass through the vertices and co-vertices. Sketch and extend the diagonals of the central rectangle to show the
asymptotes. The central rectangle and asymptotes provide the framework needed to sketch an accurate graph of the
hyperbola. Label the foci and asymptotes, and draw a smooth curve to form the hyperbola, as shown in Figure 8.
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Figure 8

TRY IT #4 Graph the hyperbola given by the equation Identify and label the vertices, co-

vertices, foci, and asymptotes.

Graphing Hyperbolas Not Centered at the Origin
Graphing hyperbolas centered at a point other than the origin is similar to graphing ellipses centered at a point

other than the origin. We use the standard forms for horizontal hyperbolas, and

for vertical hyperbolas. From these standard form equations we can easily calculate and plot key

features of the graph: the coordinates of its center, vertices, co-vertices, and foci; the equations of its asymptotes; and
the positions of the transverse and conjugate axes.

HOW TO

Given a general form for a hyperbola centered at sketch the graph.

1. Convert the general form to that standard form. Determine which of the standard forms applies to the given
equation.

2. Use the standard form identified in Step 1 to determine the position of the transverse axis; coordinates for the
center, vertices, co-vertices, foci; and equations for the asymptotes.

a. If the equation is in the form then

▪ the transverse axis is parallel to the x-axis
▪ the center is
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are
▪ the equations of the asymptotes are
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b. If the equation is in the form then

▪ the transverse axis is parallel to the y-axis
▪ the center is
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are
▪ the equations of the asymptotes are

3. Solve for the coordinates of the foci using the equation
4. Plot the center, vertices, co-vertices, foci, and asymptotes in the coordinate plane and draw a smooth curve to

form the hyperbola.

EXAMPLE 5

Graphing a Hyperbola Centered at (h, k) Given an Equation in General Form
Graph the hyperbola given by the equation Identify and label the center, vertices, co-
vertices, foci, and asymptotes.

Solution
Start by expressing the equation in standard form. Group terms that contain the same variable, and move the constant
to the opposite side of the equation.

Factor the leading coefficient of each expression.

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

Rewrite as perfect squares.

Divide both sides by the constant term to place the equation in standard form.

The standard form that applies to the given equation is where and or and

Thus, the transverse axis is parallel to the x-axis. It follows that:

• the center of the ellipse is
• the coordinates of the vertices are or and
• the coordinates of the co-vertices are or and
• the coordinates of the foci are where Solving for we have

Therefore, the coordinates of the foci are and

The equations of the asymptotes are

Next, we plot and label the center, vertices, co-vertices, foci, and asymptotes and draw smooth curves to form the
hyperbola, as shown in Figure 9.
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Figure 9

TRY IT #5 Graph the hyperbola given by the standard form of an equation Identify and

label the center, vertices, co-vertices, foci, and asymptotes.

Solving Applied Problems Involving Hyperbolas
As we discussed at the beginning of this section, hyperbolas have real-world applications in many fields, such as
astronomy, physics, engineering, and architecture. The design efficiency of hyperbolic cooling towers is particularly
interesting. Cooling towers are used to transfer waste heat to the atmosphere and are often touted for their ability to
generate power efficiently. Because of their hyperbolic form, these structures are able to withstand extreme winds while
requiring less material than any other forms of their size and strength. See Figure 10. For example, a 500-foot tower can
be made of a reinforced concrete shell only 6 or 8 inches wide!

Figure 10 Cooling towers at the Drax power station in North Yorkshire, United Kingdom (credit: Les Haines, Flickr)

The first hyperbolic towers were designed in 1914 and were 35 meters high. Today, the tallest cooling towers are in
France, standing a remarkable 170 meters tall. In Example 6 we will use the design layout of a cooling tower to find a
hyperbolic equation that models its sides.
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EXAMPLE 6

Solving Applied Problems Involving Hyperbolas
The design layout of a cooling tower is shown in Figure 11. The tower stands 179.6 meters tall. The diameter of the top is
72 meters. At their closest, the sides of the tower are 60 meters apart.

Figure 11 Project design for a natural draft cooling tower

Find the equation of the hyperbola that models the sides of the cooling tower. Assume that the center of the
hyperbola—indicated by the intersection of dashed perpendicular lines in the figure—is the origin of the coordinate
plane. Round final values to four decimal places.

Solution
We are assuming the center of the tower is at the origin, so we can use the standard form of a horizontal hyperbola

centered at the origin: where the branches of the hyperbola form the sides of the cooling tower. We must

find the values of and to complete the model.

First, we find Recall that the length of the transverse axis of a hyperbola is This length is represented by the
distance where the sides are closest, which is given as meters. So, Therefore, and

To solve for we need to substitute for and in our equation using a known point. To do this, we can use the
dimensions of the tower to find some point that lies on the hyperbola. We will use the top right corner of the tower
to represent that point. Since the y-axis bisects the tower, our x-value can be represented by the radius of the top, or 36
meters. The y-value is represented by the distance from the origin to the top, which is given as 79.6 meters. Therefore,

The sides of the tower can be modeled by the hyperbolic equation

TRY IT #6 A design for a cooling tower project is shown in Figure 12. Find the equation of the hyperbola that
models the sides of the cooling tower. Assume that the center of the hyperbola—indicated by the
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intersection of dashed perpendicular lines in the figure—is the origin of the coordinate plane.
Round final values to four decimal places.

Figure 12

MEDIA

Access these online resources for additional instruction and practice with hyperbolas.

Conic Sections: The Hyperbola Part 1 of 2 (http://openstax.org/l/hyperbola1)
Conic Sections: The Hyperbola Part 2 of 2 (http://openstax.org/l/hyperbola2)
Graph a Hyperbola with Center at Origin (http://openstax.org/l/hyperbolaorigin)
Graph a Hyperbola with Center not at Origin (http://openstax.org/l/hbnotorigin)

12.2 SECTION EXERCISES
Verbal

1. Define a hyperbola in terms
of its foci.

2. What can we conclude
about a hyperbola if its
asymptotes intersect at the
origin?

3. What must be true of the
foci of a hyperbola?

4. If the transverse axis of a
hyperbola is vertical, what
do we know about the
graph?

5. Where must the center of
hyperbola be relative to its
foci?

Algebraic

For the following exercises, determine whether the following equations represent hyperbolas. If so, write in standard
form.

6. 7. 8.

9. 10.
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For the following exercises, write the equation for the hyperbola in standard form if it is not already, and identify the
vertices and foci, and write equations of asymptotes.

11. 12. 13.

14. 15. 16.

17. 18. 19.

20. 21.

22. 23.

24. 25.

For the following exercises, find the equations of the asymptotes for each hyperbola.

26. 27. 28.

29. 30.

Graphical

For the following exercises, sketch a graph of the hyperbola, labeling vertices and foci.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41.

42. 43.

44.

For the following exercises, given information about the graph of the hyperbola, find its equation.

45. Vertices at and
and one focus at

46. Vertices at and
and one focus at

47. Vertices at and
and one focus at
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48. Center: vertex:
one focus:

49. Center: vertex:
one focus:

50. Center: vertex:
one focus:

For the following exercises, given the graph of the hyperbola, find its equation.

51. 52. 53.

54. 55.

Extensions

For the following exercises, express the equation for the hyperbola as two functions, with as a function of Express as
simply as possible. Use a graphing calculator to sketch the graph of the two functions on the same axes.

56. 57. 58.

59. 60.

Real-World Applications

For the following exercises, a hedge is to be constructed in the shape of a hyperbola near a fountain at the center of the
yard. Find the equation of the hyperbola and sketch the graph.

61. The hedge will follow the
asymptotes

and its
closest distance to the
center fountain is 5 yards.

62. The hedge will follow the
asymptotes

and
its closest distance to the
center fountain is 6 yards.

63. The hedge will follow the
asymptotes and

and its closest
distance to the center
fountain is 10 yards.
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64. The hedge will follow the
asymptotes and

and its closest
distance to the center
fountain is 12 yards.

65. The hedge will follow the
asymptotes and

and its closest
distance to the center
fountain is 20 yards.

For the following exercises, assume an object enters our solar system and we want to graph its path on a coordinate
system with the sun at the origin and the x-axis as the axis of symmetry for the object's path. Give the equation of the
flight path of each object using the given information.

66. The object enters along a
path approximated by the
line and passes
within 1 au (astronomical
unit) of the sun at its
closest approach, so that
the sun is one focus of the
hyperbola. It then departs
the solar system along a
path approximated by the
line

67. The object enters along a
path approximated by the
line and passes
within 0.5 au of the sun at
its closest approach, so the
sun is one focus of the
hyperbola. It then departs
the solar system along a
path approximated by the
line

68. The object enters along a
path approximated by the
line and
passes within 1 au of the
sun at its closest approach,
so the sun is one focus of
the hyperbola. It then
departs the solar system
along a path approximated
by the line

69. The object enters along a
path approximated by the
line and passes
within 1 au of the sun at its
closest approach, so the
sun is one focus of the
hyperbola. It then departs
the solar system along a
path approximated by the
line

70. The object enters along a
path approximated by the
line and passes
within 1 au of the sun at its
closest approach, so the
sun is one focus of the
hyperbola. It then departs
the solar system along a
path approximated by the
line

12.3 The Parabola
Learning Objectives
In this section, you will:

Graph parabolas with vertices at the origin.
Write equations of parabolas in standard form.
Graph parabolas with vertices not at the origin.
Solve applied problems involving parabolas.
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Figure 1 Katherine Johnson's pioneering mathematical work in the area of parabolic and other orbital calculations
played a significant role in the development of U.S space flight. (credit: NASA)

Katherine Johnson is the pioneering NASA mathematician who was integral to the successful and safe flight and return
of many human missions as well as satellites. Prior to the work featured in the movie Hidden Figures, she had already
made major contributions to the space program. She provided trajectory analysis for the Mercury mission, in which Alan
Shepard became the first American to reach space, and she and engineer Ted Sopinski authored a monumental paper
regarding placing an object in a precise orbital position and having it return safely to Earth. Many of the orbits she
determined were made up of parabolas, and her ability to combine different types of math enabled an unprecedented
level of precision. Johnson said, "You tell me when you want it and where you want it to land, and I'll do it backwards and
tell you when to take off."

Johnson's work on parabolic orbits and other complex mathematics resulted in successful orbits, Moon landings, and
the development of the Space Shuttle program. Applications of parabolas are also critical to other areas of science.
Parabolic mirrors (or reflectors) are able to capture energy and focus it to a single point. The advantages of this property
are evidenced by the vast list of parabolic objects we use every day: satellite dishes, suspension bridges, telescopes,
microphones, spotlights, and car headlights, to name a few. Parabolic reflectors are also used in alternative energy
devices, such as solar cookers and water heaters, because they are inexpensive to manufacture and need little
maintenance. In this section we will explore the parabola and its uses, including low-cost, energy-efficient solar designs.

Graphing Parabolas with Vertices at the Origin
In The Ellipse, we saw that an ellipse is formed when a plane cuts through a right circular cone. If the plane is parallel to
the edge of the cone, an unbounded curve is formed. This curve is a parabola. See Figure 2.
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Figure 2 Parabola

Like the ellipse and hyperbola, the parabola can also be defined by a set of points in the coordinate plane. A parabola is
the set of all points in a plane that are the same distance from a fixed line, called the directrix, and a fixed point
(the focus) not on the directrix.

In Quadratic Functions (http://openstax.org/books/precalculus-2e/pages/3-3-power-functions-and-polynomial-
functions), we learned about a parabola’s vertex and axis of symmetry. Now we extend the discussion to include other
key features of the parabola. See Figure 3. Notice that the axis of symmetry passes through the focus and vertex and is
perpendicular to the directrix. The vertex is the midpoint between the directrix and the focus.

The line segment that passes through the focus and is parallel to the directrix is called the latus rectum. The endpoints
of the latus rectum lie on the curve. By definition, the distance from the focus to any point on the parabola is equal
to the distance from to the directrix.

Figure 3 Key features of the parabola

To work with parabolas in the coordinate plane, we consider two cases: those with a vertex at the origin and those with a
vertex at a point other than the origin. We begin with the former.
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Figure 4

Let be a point on the parabola with vertex focus and directrix as shown in Figure 4. The
distance from point to point on the directrix is the difference of the y-values: The distance from
the focus to the point is also equal to and can be expressed using the distance formula.

Set the two expressions for equal to each other and solve for to derive the equation of the parabola. We do this
because the distance from to equals the distance from to

We then square both sides of the equation, expand the squared terms, and simplify by combining like terms.

The equations of parabolas with vertex are when the x-axis is the axis of symmetry and when
the y-axis is the axis of symmetry. These standard forms are given below, along with their general graphs and key
features.

Standard Forms of Parabolas with Vertex (0, 0)

Table 1 and Figure 5 summarize the standard features of parabolas with a vertex at the origin.

Axis of Symmetry Equation Focus Directrix Endpoints of Latus Rectum

x-axis

y-axis

Table 1

1184 12 • Analytic Geometry

Access for free at openstax.org



Figure 5 (a) When and the axis of symmetry is the x-axis, the parabola opens right. (b) When and the
axis of symmetry is the x-axis, the parabola opens left. (c) When and the axis of symmetry is the y-axis, the
parabola opens up. (d) When and the axis of symmetry is the y-axis, the parabola opens down.

The key features of a parabola are its vertex, axis of symmetry, focus, directrix, and latus rectum. See Figure 5. When
given a standard equation for a parabola centered at the origin, we can easily identify the key features to graph the
parabola.

A line is said to be tangent to a curve if it intersects the curve at exactly one point. If we sketch lines tangent to the
parabola at the endpoints of the latus rectum, these lines intersect on the axis of symmetry, as shown in Figure 6.
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Figure 6

HOW TO

Given a standard form equation for a parabola centered at (0, 0), sketch the graph.

1. Determine which of the standard forms applies to the given equation: or
2. Use the standard form identified in Step 1 to determine the axis of symmetry, focus, equation of the directrix,

and endpoints of the latus rectum.
a. If the equation is in the form then

▪ the axis of symmetry is the x-axis,
▪ set equal to the coefficient of x in the given equation to solve for If the parabola opens right.

If the parabola opens left.
▪ use to find the coordinates of the focus,
▪ use to find the equation of the directrix,
▪ use to find the endpoints of the latus rectum, Alternately, substitute into the original

equation.

b. If the equation is in the form then
▪ the axis of symmetry is the y-axis,
▪ set equal to the coefficient of y in the given equation to solve for If the parabola opens up. If

the parabola opens down.
▪ use to find the coordinates of the focus,
▪ use to find equation of the directrix,
▪ use to find the endpoints of the latus rectum,

3. Plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.

EXAMPLE 1

Graphing a Parabola with Vertex (0, 0) and the x-axis as the Axis of Symmetry
Graph Identify and label the focus, directrix, and endpoints of the latus rectum.
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Solution
The standard form that applies to the given equation is Thus, the axis of symmetry is the x-axis. It follows that:

• so Since the parabola opens right
• the coordinates of the focus are
• the equation of the directrix is
• the endpoints of the latus rectum have the same x-coordinate at the focus. To find the endpoints, substitute

into the original equation:

Next we plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola. Figure 7

Figure 7

TRY IT #1 Graph Identify and label the focus, directrix, and endpoints of the latus rectum.

EXAMPLE 2

Graphing a Parabola with Vertex (0, 0) and the y-axis as the Axis of Symmetry
Graph Identify and label the focus, directrix, and endpoints of the latus rectum.

Solution
The standard form that applies to the given equation is Thus, the axis of symmetry is the y-axis. It follows that:

• so Since the parabola opens down.
• the coordinates of the focus are
• the equation of the directrix is
• the endpoints of the latus rectum can be found by substituting into the original equation,

Next we plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.
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Figure 8

TRY IT #2 Graph Identify and label the focus, directrix, and endpoints of the latus rectum.

Writing Equations of Parabolas in Standard Form
In the previous examples, we used the standard form equation of a parabola to calculate the locations of its key features.
We can also use the calculations in reverse to write an equation for a parabola when given its key features.

HOW TO

Given its focus and directrix, write the equation for a parabola in standard form.

1. Determine whether the axis of symmetry is the x- or y-axis.
a. If the given coordinates of the focus have the form then the axis of symmetry is the x-axis. Use the

standard form
b. If the given coordinates of the focus have the form then the axis of symmetry is the y-axis. Use the

standard form

2. Multiply
3. Substitute the value from Step 2 into the equation determined in Step 1.

EXAMPLE 3

Writing the Equation of a Parabola in Standard Form Given its Focus and Directrix
What is the equation for the parabola with focus and directrix

Solution
The focus has the form so the equation will have the form

• Multiplying we have
• Substituting for we have

Therefore, the equation for the parabola is

TRY IT #3 What is the equation for the parabola with focus and directrix

Graphing Parabolas with Vertices Not at the Origin
Like other graphs we’ve worked with, the graph of a parabola can be translated. If a parabola is translated units
horizontally and units vertically, the vertex will be This translation results in the standard form of the equation
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we saw previously with replaced by and replaced by

To graph parabolas with a vertex other than the origin, we use the standard form for
parabolas that have an axis of symmetry parallel to the x-axis, and for parabolas that have an axis
of symmetry parallel to the y-axis. These standard forms are given below, along with their general graphs and key
features.

Standard Forms of Parabolas with Vertex (h, k)

Table 2 and Figure 9 summarize the standard features of parabolas with a vertex at a point

Axis of Symmetry Equation Focus Directrix Endpoints of Latus Rectum

Table 2
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Figure 9 (a) When the parabola opens right. (b) When the parabola opens left. (c) When the
parabola opens up. (d) When the parabola opens down.

HOW TO

Given a standard form equation for a parabola centered at (h, k), sketch the graph.

1. Determine which of the standard forms applies to the given equation: or

2. Use the standard form identified in Step 1 to determine the vertex, axis of symmetry, focus, equation of the
directrix, and endpoints of the latus rectum.
a. If the equation is in the form then:

▪ use the given equation to identify and for the vertex,
▪ use the value of to determine the axis of symmetry,
▪ set equal to the coefficient of in the given equation to solve for If the parabola opens

right. If the parabola opens left.
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▪ use and to find the coordinates of the focus,
▪ use and to find the equation of the directrix,
▪ use and to find the endpoints of the latus rectum,

b. If the equation is in the form then:
▪ use the given equation to identify and for the vertex,
▪ use the value of to determine the axis of symmetry,
▪ set equal to the coefficient of in the given equation to solve for If the parabola opens

up. If the parabola opens down.
▪ use and to find the coordinates of the focus,
▪ use and to find the equation of the directrix,
▪ use and to find the endpoints of the latus rectum,

3. Plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form the
parabola.

EXAMPLE 4

Graphing a Parabola with Vertex (h, k) and Axis of Symmetry Parallel to the x-axis
Graph Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of the latus
rectum.

Solution
The standard form that applies to the given equation is Thus, the axis of symmetry is parallel to
the x-axis. It follows that:

• the vertex is
• the axis of symmetry is
• so Since the parabola opens left.
• the coordinates of the focus are
• the equation of the directrix is
• the endpoints of the latus rectum are or and

Next we plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form the
parabola. See Figure 10.

Figure 10
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TRY IT #4 Graph Identify and label the vertex, axis of symmetry, focus, directrix, and
endpoints of the latus rectum.

EXAMPLE 5

Graphing a Parabola from an Equation Given in General Form
Graph Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of the
latus rectum.

Solution
Start by writing the equation of the parabola in standard form. The standard form that applies to the given equation is

Thus, the axis of symmetry is parallel to the y-axis. To express the equation of the parabola in this
form, we begin by isolating the terms that contain the variable in order to complete the square.

It follows that:

• the vertex is
• the axis of symmetry is
• since and so the parabola opens up
• the coordinates of the focus are
• the equation of the directrix is
• the endpoints of the latus rectum are or and

Next we plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form the
parabola. See Figure 11.

Figure 11

TRY IT #5 Graph Identify and label the vertex, axis of symmetry, focus, directrix, and
endpoints of the latus rectum.

Solving Applied Problems Involving Parabolas
As we mentioned at the beginning of the section, parabolas are used to design many objects we use every day, such as
telescopes, suspension bridges, microphones, and radar equipment. Parabolic mirrors, such as the one used to light the
Olympic torch, have a very unique reflecting property. When rays of light parallel to the parabola’s axis of symmetry are
directed toward any surface of the mirror, the light is reflected directly to the focus. See Figure 12. This is why the
Olympic torch is ignited when it is held at the focus of the parabolic mirror.
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Figure 12 Reflecting property of parabolas

Parabolic mirrors have the ability to focus the sun’s energy to a single point, raising the temperature hundreds of
degrees in a matter of seconds. Thus, parabolic mirrors are featured in many low-cost, energy efficient solar products,
such as solar cookers, solar heaters, and even travel-sized fire starters.

EXAMPLE 6

Solving Applied Problems Involving Parabolas
A cross-section of a design for a travel-sized solar fire starter is shown in Figure 13. The sun’s rays reflect off the
parabolic mirror toward an object attached to the igniter. Because the igniter is located at the focus of the parabola, the
reflected rays cause the object to burn in just seconds.

ⓐ Find the equation of the parabola that models the fire starter. Assume that the vertex of the parabolic mirror is the
origin of the coordinate plane.

ⓑ Use the equation found in part ⓐ to find the depth of the fire starter.

Figure 13 Cross-section of a travel-sized solar fire starter

Solution

ⓐ The vertex of the dish is the origin of the coordinate plane, so the parabola will take the standard form
where The igniter, which is the focus, is 1.7 inches above the vertex of the dish. Thus we have

ⓑ The dish extends inches on either side of the origin. We can substitute 2.25 for in the equation from
part (a) to find the depth of the dish.

The dish is about 0.74 inches deep.
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TRY IT #6 Balcony-sized solar cookers have been designed for families living in India. The top of a dish has a
diameter of 1600 mm. The sun’s rays reflect off the parabolic mirror toward the “cooker,” which is
placed 320 mm from the base.

ⓐ Find an equation that models a cross-section of the solar cooker. Assume that the vertex of
the parabolic mirror is the origin of the coordinate plane, and that the parabola opens to the right
(i.e., has the x-axis as its axis of symmetry).

ⓑ Use the equation found in part ⓐ to find the depth of the cooker.

MEDIA

Access these online resources for additional instruction and practice with parabolas.

Conic Sections: The Parabola Part 1 of 2 (http://openstax.org/l/parabola1)
Conic Sections: The Parabola Part 2 of 2 (http://openstax.org/l/parabola2)
Parabola with Vertical Axis (http://openstax.org/l/parabolavertcal)
Parabola with Horizontal Axis (http://openstax.org/l/parabolahoriz)

12.3 SECTION EXERCISES
Verbal

1. Define a parabola in terms
of its focus and directrix.

2. If the equation of a parabola
is written in standard form
and is positive and the
directrix is a vertical line,
then what can we conclude
about its graph?

3. If the equation of a parabola
is written in standard form
and is negative and the
directrix is a horizontal line,
then what can we conclude
about its graph?

4. What is the effect on the
graph of a parabola if its
equation in standard form
has increasing values of

5. As the graph of a parabola
becomes wider, what will
happen to the distance
between the focus and
directrix?

Algebraic

For the following exercises, determine whether the given equation is a parabola. If so, rewrite the equation in standard
form.

6. 7. 8.

9. 10.

For the following exercises, rewrite the given equation in standard form, and then determine the vertex focus
and directrix of the parabola.

11. 12. 13.

14. 15. 16.
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17. 18. 19.

20. 21. 22.

23. 24. 25.

26. 27. 28.

29. 30.

Graphical

For the following exercises, graph the parabola, labeling the focus and the directrix.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41. 42.

43. 44.

For the following exercises, find the equation of the parabola given information about its graph.

45. Vertex is directrix is
focus is

46. Vertex is directrix is
focus is

47. Vertex is directrix is
focus is

48. Vertex is directrix
is focus is

49. Vertex is

directrix is focus

is

50. Vertex is directrix is
focus is
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For the following exercises, determine the equation for the parabola from its graph.

51. 52. 53.

54. 55.

Extensions

For the following exercises, the vertex and endpoints of the latus rectum of a parabola are given. Find the equation.

56. , Endpoints , 57. , Endpoints , 58. , Endpoints ,

59. , Endpoints
,

60. , Endpoints
,

Real-World Applications

61. The mirror in an
automobile headlight has a
parabolic cross-section
with the light bulb at the
focus. On a schematic, the
equation of the parabola is
given as At what
coordinates should you
place the light bulb?

62. If we want to construct the
mirror from the previous
exercise such that the
focus is located at

what should the
equation of the parabola
be?

63. A satellite dish is shaped
like a paraboloid of
revolution. This means that
it can be formed by
rotating a parabola around
its axis of symmetry. The
receiver is to be located at
the focus. If the dish is 12
feet across at its opening
and 4 feet deep at its
center, where should the
receiver be placed?
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64. Consider the satellite dish
from the previous exercise.
If the dish is 8 feet across
at the opening and 2 feet
deep, where should we
place the receiver?

65. The reflector in a
searchlight is shaped like a
paraboloid of revolution. A
light source is located 1
foot from the base along
the axis of symmetry. If the
opening of the searchlight
is 3 feet across, find the
depth.

66. If the reflector in the
searchlight from the
previous exercise has the
light source located 6
inches from the base along
the axis of symmetry and
the opening is 4 feet, find
the depth.

67. An arch is in the shape of a
parabola. It has a span of
100 feet and a maximum
height of 20 feet. Find the
equation of the parabola,
and determine the height
of the arch 40 feet from the
center.

68. If the arch from the
previous exercise has a
span of 160 feet and a
maximum height of 40
feet, find the equation of
the parabola, and
determine the distance
from the center at which
the height is 20 feet.

69. An object is projected so as
to follow a parabolic path
given by
where is the horizontal
distance traveled in feet
and is the height.
Determine the maximum
height the object reaches.

70. For the object from the
previous exercise, assume
the path followed is given
by
Determine how far along
the horizontal the object
traveled to reach
maximum height.

12.4 Rotation of Axes
Learning Objectives
In this section, you will:

Identify nondegenerate conic sections given their general form equations.
Use rotation of axes formulas.
Write equations of rotated conics in standard form.
Identify conics without rotating axes.

As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and
extending infinitely far in opposite directions, which we also call a cone. The way in which we slice the cone will
determine the type of conic section formed at the intersection. A circle is formed by slicing a cone with a plane
perpendicular to the axis of symmetry of the cone. An ellipse is formed by slicing a single cone with a slanted plane not
perpendicular to the axis of symmetry. A parabola is formed by slicing the plane through the top or bottom of the
double-cone, whereas a hyperbola is formed when the plane slices both the top and bottom of the cone. See Figure 1.
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Figure 1 The nondegenerate conic sections

Ellipses, circles, hyperbolas, and parabolas are sometimes called the nondegenerate conic sections, in contrast to the
degenerate conic sections, which are shown in Figure 2. A degenerate conic results when a plane intersects the double
cone and passes through the apex. Depending on the angle of the plane, three types of degenerate conic sections are
possible: a point, a line, or two intersecting lines.
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Figure 2 Degenerate conic sections

Identifying Nondegenerate Conics in General Form
In previous sections of this chapter, we have focused on the standard form equations for nondegenerate conic sections.
In this section, we will shift our focus to the general form equation, which can be used for any conic. The general form is
set equal to zero, and the terms and coefficients are given in a particular order, as shown below.

where and are not all zero. We can use the values of the coefficients to identify which type conic is represented
by a given equation.

You may notice that the general form equation has an term that we have not seen in any of the standard form
equations. As we will discuss later, the term rotates the conic whenever is not equal to zero.

Conic Sections Example

ellipse

circle

hyperbola

parabola

one line

Table 1
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Conic Sections Example

intersecting lines

parallel lines

a point

no graph

Table 1

General Form of Conic Sections

A conic section has the general form

where and are not all zero.

Table 2 summarizes the different conic sections where and and are nonzero real numbers. This indicates
that the conic has not been rotated.

ellipse

circle

hyperbola where and are positive

parabola

Table 2

HOW TO

Given the equation of a conic, identify the type of conic.

1. Rewrite the equation in the general form,
2. Identify the values of and from the general form.

a. If and are nonzero, have the same sign, and are not equal to each other, then the graph may be an
ellipse.

b. If and are equal and nonzero and have the same sign, then the graph may be a circle.
c. If and are nonzero and have opposite signs, then the graph may be a hyperbola.
d. If either or is zero, then the graph may be a parabola.

If B = 0, the conic section will have a vertical and/or horizontal axes. If B does not equal 0, as shown below, the
conic section is rotated. Notice the phrase “may be” in the definitions. That is because the equation may not
represent a conic section at all, depending on the values of A, B, C, D, E, and F. For example, the degenerate case
of a circle or an ellipse is a point:

when A and B have the same sign.
The degenerate case of a hyperbola is two intersecting straight lines: when A and B have
opposite signs.
On the other hand, the equation, when A and B are positive does not represent a graph at
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all, since there are no real ordered pairs which satisfy it.

EXAMPLE 1

Identifying a Conic from Its General Form
Identify the graph of each of the following nondegenerate conic sections.

ⓐ ⓑ ⓒ
ⓓ

Solution

ⓐ Rewriting the general form, we have
and so we observe that and have opposite signs. The graph of this equation is a hyperbola.

ⓑ Rewriting the general form, we have
and We can determine that the equation is a parabola, since is zero.

ⓒ Rewriting the general form, we have
and Because the graph of this equation is a circle.

ⓓ Rewriting the general form, we have
and Because and the graph of this equation is an ellipse.

TRY IT #1 Identify the graph of each of the following nondegenerate conic sections.

ⓐ ⓑ
Finding a New Representation of the Given Equation after Rotating through a Given Angle
Until now, we have looked at equations of conic sections without an term, which aligns the graphs with the x- and
y-axes. When we add an term, we are rotating the conic about the origin. If the x- and y-axes are rotated through an
angle, say then every point on the plane may be thought of as having two representations: on the Cartesian
plane with the original x-axis and y-axis, and on the new plane defined by the new, rotated axes, called the
x'-axis and y'-axis. See Figure 3.

Figure 3 The graph of the rotated ellipse
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We will find the relationships between and on the Cartesian plane with and on the new rotated plane. See
Figure 4.

Figure 4 The Cartesian plane with x- and y-axes and the resulting x′− and y′−axes formed by a rotation by an angle

The original coordinate x- and y-axes have unit vectors and The rotated coordinate axes have unit vectors and
The angle is known as the angle of rotation. See Figure 5. We may write the new unit vectors in terms of the original
ones.

Figure 5 Relationship between the old and new coordinate planes.

Consider a vector in the new coordinate plane. It may be represented in terms of its coordinate axes.

Because we have representations of and in terms of the new coordinate system.
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Equations of Rotation

If a point on the Cartesian plane is represented on a new coordinate plane where the axes of rotation are
formed by rotating an angle from the positive x-axis, then the coordinates of the point with respect to the new axes
are We can use the following equations of rotation to define the relationship between and

and

HOW TO

Given the equation of a conic, find a new representation after rotating through an angle.

1. Find and where and
2. Substitute the expression for and into in the given equation, then simplify.
3. Write the equations with and in standard form.

EXAMPLE 2

Finding a New Representation of an Equation after Rotating through a Given Angle
Find a new representation of the equation after rotating through an angle of

Solution
Find and where and

Because

and

Substitute and into

Simplify.
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Write the equations with and in the standard form.

This equation is an ellipse. Figure 6 shows the graph.

Figure 6

Writing Equations of Rotated Conics in Standard Form
Now that we can find the standard form of a conic when we are given an angle of rotation, we will learn how to
transform the equation of a conic given in the form into standard form by
rotating the axes. To do so, we will rewrite the general form as an equation in the and coordinate system without
the term, by rotating the axes by a measure of that satisfies

We have learned already that any conic may be represented by the second degree equation

where and are not all zero. However, if then we have an term that prevents us from rewriting the
equation in standard form. To eliminate it, we can rotate the axes by an acute angle where

• If then is in the first quadrant, and is between
• If then is in the second quadrant, and is between
• If then
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HOW TO

Given an equation for a conic in the system, rewrite the equation without the term in terms of and
where the and axes are rotations of the standard axes by degrees.

1. Find
2. Find and
3. Substitute and into and
4. Substitute the expression for and into in the given equation, and then simplify.
5. Write the equations with and in the standard form with respect to the rotated axes.

EXAMPLE 3

Rewriting an Equation with respect to the x′ and y′ axes without the x′y′ Term
Rewrite the equation in the system without an term.

Solution
First, we find See Figure 7.

Figure 7

So the hypotenuse is

Next, we find and

12.4 • Rotation of Axes 1205



Substitute the values of and into and

and

Substitute the expressions for and into in the given equation, and then simplify.

Write the equations with and in the standard form with respect to the new coordinate system.

Figure 8 shows the graph of the ellipse.

Figure 8
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TRY IT #2 Rewrite the in the system without the term.

EXAMPLE 4

Graphing an Equation That Has No x′y′ Terms
Graph the following equation relative to the system:

Solution
First, we find

Because we can draw a reference triangle as in Figure 9.

Figure 9

Thus, the hypotenuse is

Next, we find and We will use half-angle identities.
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Now we find and  

and

Now we substitute and into

Figure 10 shows the graph of the hyperbola

Figure 10
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Identifying Conics without Rotating Axes
Now we have come full circle. How do we identify the type of conic described by an equation? What happens when the
axes are rotated? Recall, the general form of a conic is

If we apply the rotation formulas to this equation we get the form

It may be shown that The expression does not vary after rotation, so we call the expression
invariant. The discriminant, is invariant and remains unchanged after rotation. Because the discriminant
remains unchanged, observing the discriminant enables us to identify the conic section.

Using the Discriminant to Identify a Conic

If the equation is transformed by rotating axes into the equation
then

The equation is an ellipse, a parabola, or a hyperbola, or a degenerate case of
one of these.

If the discriminant, is

• the conic section is an ellipse
• the conic section is a parabola
• the conic section is a hyperbola

EXAMPLE 5

Identifying the Conic without Rotating Axes
Identify the conic for each of the following without rotating axes.

ⓐ ⓑ
Solution

ⓐ Let’s begin by determining and

Now, we find the discriminant.

Therefore, represents an ellipse.

ⓑ Again, let’s begin by determining and

Now, we find the discriminant.
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Therefore, represents an ellipse.

TRY IT #3 Identify the conic for each of the following without rotating axes.

ⓐ ⓑ
MEDIA

Access this online resource for additional instruction and practice with conic sections and rotation of axes.

Introduction to Conic Sections (http://openstax.org/l/introconic)

12.4 SECTION EXERCISES
Verbal

1. What effect does the term have on the graph of
a conic section?

2. If the equation of a conic section is written in the
form and
what can we conclude?

3. If the equation of a conic section is written in the
form and

what can we conclude?

4. Given the equation what
can we conclude if

5. For the equation
the value

of that satisfies gives us what
information?

Algebraic

For the following exercises, determine which conic section is represented based on the given equation.

6. 7. 8.

9. 10. 11.

12. 13.

14. 15.

16. 17.
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For the following exercises, find a new representation of the given equation after rotating through the given angle.

18. 19. 20.

21. 22.

For the following exercises, determine the angle that will eliminate the term and write the corresponding equation
without the term.

23. 24.

25. 26.

27. 28.

29. 30.

Graphical

For the following exercises, rotate through the given angle based on the given equation. Give the new equation and
graph the original and rotated equation.

31. 32. 33.

34. 35. 36.

37. 38.

For the following exercises, graph the equation relative to the system in which the equation has no term.

39. 40. 41.

42. 43. 44.

45. 46.

47. 48.

49.

For the following exercises, determine the angle of rotation in order to eliminate the term. Then graph the new set of
axes.

50. 51.
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52. 53.

54. 55.

For the following exercises, determine the value of based on the given equation.

56. Given
find for the graph to be a parabola.

57. Given
find for the graph to be an ellipse.

58. Given
find for the graph to be a hyperbola.

59. Given
find for the graph to be a parabola.

60. Given
find for the graph to be an ellipse.

12.5 Conic Sections in Polar Coordinates
Learning Objectives
In this section, you will:

Identify a conic in polar form.
Graph the polar equations of conics.
Define conics in terms of a focus and a directrix.

Figure 1 Planets orbiting the sun follow elliptical paths. (credit: NASA Blueshift, Flickr)

Most of us are familiar with orbital motion, such as the motion of a planet around the sun or an electron around an
atomic nucleus. Within the planetary system, orbits of planets, asteroids, and comets around a larger celestial body are
often elliptical. Comets, however, may take on a parabolic or hyperbolic orbit instead. And, in reality, the characteristics
of the planets’ orbits may vary over time. Each orbit is tied to the location of the celestial body being orbited and the
distance and direction of the planet or other object from that body. As a result, we tend to use polar coordinates to
represent these orbits.

In an elliptical orbit, the periapsis is the point at which the two objects are closest, and the apoapsis is the point at which
they are farthest apart. Generally, the velocity of the orbiting body tends to increase as it approaches the periapsis and
decrease as it approaches the apoapsis. Some objects reach an escape velocity, which results in an infinite orbit. These
bodies exhibit either a parabolic or a hyperbolic orbit about a body; the orbiting body breaks free of the celestial body’s
gravitational pull and fires off into space. Each of these orbits can be modeled by a conic section in the polar coordinate
system.

Identifying a Conic in Polar Form
Any conic may be determined by three characteristics: a single focus, a fixed line called the directrix, and the ratio of the
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distances of each to a point on the graph. Consider the parabola shown in Figure 2.

Figure 2

In The Parabola, we learned how a parabola is defined by the focus (a fixed point) and the directrix (a fixed line). In this
section, we will learn how to define any conic in the polar coordinate system in terms of a fixed point, the focus at
the pole, and a line, the directrix, which is perpendicular to the polar axis.

If is a fixed point, the focus, and is a fixed line, the directrix, then we can let be a fixed positive number, called the
eccentricity, which we can define as the ratio of the distances from a point on the graph to the focus and the point on
the graph to the directrix. Then the set of all points such that is a conic. In other words, we can define a conic
as the set of all points with the property that the ratio of the distance from to to the distance from to is equal
to the constant

For a conic with eccentricity

• if the conic is an ellipse
• if the conic is a parabola
• if the conic is an hyperbola

With this definition, we may now define a conic in terms of the directrix, the eccentricity and the angle Thus,
each conic may be written as a polar equation, an equation written in terms of and

The Polar Equation for a Conic

For a conic with a focus at the origin, if the directrix is where is a positive real number, and the eccentricity
is a positive real number the conic has a polar equation

For a conic with a focus at the origin, if the directrix is where is a positive real number, and the eccentricity
is a positive real number the conic has a polar equation

HOW TO

Given the polar equation for a conic, identify the type of conic, the directrix, and the eccentricity.

1. Multiply the numerator and denominator by the reciprocal of the constant in the denominator to rewrite the
equation in standard form.

2. Identify the eccentricity as the coefficient of the trigonometric function in the denominator.
3. Compare with 1 to determine the shape of the conic.
4. Determine the directrix as if cosine is in the denominator and if sine is in the denominator. Set
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equal to the numerator in standard form to solve for or

EXAMPLE 1

Identifying a Conic Given the Polar Form
For each of the following equations, identify the conic with focus at the origin, the directrix, and the eccentricity.

a.

b.

c.

Solution
For each of the three conics, we will rewrite the equation in standard form. Standard form has a 1 as the constant in the
denominator. Therefore, in all three parts, the first step will be to multiply the numerator and denominator by the
reciprocal of the constant of the original equation, where is that constant.

a. Multiply the numerator and denominator by

Because is in the denominator, the directrix is Comparing to standard form, note that Therefore,
from the numerator,

Since the conic is an ellipse. The eccentricity is and the directrix is

b. Multiply the numerator and denominator by

Because is in the denominator, the directrix is Comparing to standard form, Therefore, from
the numerator,

Since the conic is a hyperbola. The eccentricity is and the directrix is

c. Multiply the numerator and denominator by

1214 12 • Analytic Geometry

Access for free at openstax.org



Because sine is in the denominator, the directrix is Comparing to standard form, Therefore, from the
numerator,

Because the conic is a parabola. The eccentricity is and the directrix is

TRY IT #1 Identify the conic with focus at the origin, the directrix, and the eccentricity for

Graphing the Polar Equations of Conics
When graphing in Cartesian coordinates, each conic section has a unique equation. This is not the case when graphing in
polar coordinates. We must use the eccentricity of a conic section to determine which type of curve to graph, and then
determine its specific characteristics. The first step is to rewrite the conic in standard form as we have done in the
previous example. In other words, we need to rewrite the equation so that the denominator begins with 1. This enables
us to determine and, therefore, the shape of the curve. The next step is to substitute values for and solve for to plot
a few key points. Setting equal to and provides the vertices so we can create a rough sketch of the graph.

EXAMPLE 2

Graphing a Parabola in Polar Form
Graph

Solution
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of 3, which
is

Because we will graph a parabola with a focus at the origin. The function has a and there is an addition
sign in the denominator, so the directrix is
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The directrix is

Plotting a few key points as in Table 1 will enable us to see the vertices. See Figure 3.

A B C D

undefined

Table 1

Figure 3

Analysis
We can check our result with a graphing utility. See Figure 4.

Figure 4

EXAMPLE 3

Graphing a Hyperbola in Polar Form
Graph

1216 12 • Analytic Geometry

Access for free at openstax.org



Solution
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of 2, which
is

Because so we will graph a hyperbola with a focus at the origin. The function has a term and there is
a subtraction sign in the denominator, so the directrix is

The directrix is

Plotting a few key points as in Table 2 will enable us to see the vertices. See Figure 5.

A B C D

Table 2

Figure 5

12.5 • Conic Sections in Polar Coordinates 1217



EXAMPLE 4

Graphing an Ellipse in Polar Form
Graph

Solution
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of 5, which
is

Because so we will graph an ellipse with a focus at the origin. The function has a and there is a
subtraction sign in the denominator, so the directrix is

The directrix is

Plotting a few key points as in Table 3 will enable us to see the vertices. See Figure 6.

A B C D

Table 3

Figure 6
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Analysis
We can check our result using a graphing utility. See Figure 7.

Figure 7 graphed on a viewing window of by and

TRY IT #2 Graph

Defining Conics in Terms of a Focus and a Directrix
So far we have been using polar equations of conics to describe and graph the curve. Now we will work in reverse; we
will use information about the origin, eccentricity, and directrix to determine the polar equation.

HOW TO

Given the focus, eccentricity, and directrix of a conic, determine the polar equation.

1. Determine whether the directrix is horizontal or vertical. If the directrix is given in terms of we use the general
polar form in terms of sine. If the directrix is given in terms of we use the general polar form in terms of
cosine.

2. Determine the sign in the denominator. If use subtraction. If use addition.
3. Write the coefficient of the trigonometric function as the given eccentricity.
4. Write the absolute value of in the numerator, and simplify the equation.

EXAMPLE 5

Finding the Polar Form of a Vertical Conic Given a Focus at the Origin and the Eccentricity and Directrix
Find the polar form of the conic given a focus at the origin, and directrix

Solution
The directrix is so we know the trigonometric function in the denominator is sine.

Because so we know there is a subtraction sign in the denominator. We use the standard form of

and and
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Therefore,

EXAMPLE 6

Finding the Polar Form of a Horizontal Conic Given a Focus at the Origin and the Eccentricity and Directrix
Find the polar form of a conic given a focus at the origin, and directrix

Solution
Because the directrix is we know the function in the denominator is cosine. Because so we know
there is an addition sign in the denominator. We use the standard form of

and and

Therefore,

TRY IT #3 Find the polar form of the conic given a focus at the origin, and directrix

EXAMPLE 7

Converting a Conic in Polar Form to Rectangular Form
Convert the conic to rectangular form.

Solution
We will rearrange the formula to use the identities
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TRY IT #4 Convert the conic to rectangular form.

MEDIA

Access these online resources for additional instruction and practice with conics in polar coordinates.

Polar Equations of Conic Sections (http://openstax.org/l/determineconic)
Graphing Polar Equations of Conics - 1 (http://openstax.org/l/graphconic1)
Graphing Polar Equations of Conics - 2 (http://openstax.org/l/graphconic2)

12.5 SECTION EXERCISES
Verbal

1. Explain how eccentricity
determines which conic
section is given.

2. If a conic section is written
as a polar equation, what
must be true of the
denominator?

3. If a conic section is written
as a polar equation, and the
denominator involves
what conclusion can be
drawn about the directrix?

4. If the directrix of a conic
section is perpendicular to
the polar axis, what do we
know about the equation of
the graph?

5. What do we know about the
focus/foci of a conic section
if it is written as a polar
equation?

Algebraic

For the following exercises, identify the conic with a focus at the origin, and then give the directrix and eccentricity.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.
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For the following exercises, convert the polar equation of a conic section to a rectangular equation.

18. 19. 20.

21. 22. 23.

24. 25. 26.

27. 28. 29.

30.

For the following exercises, graph the given conic section. If it is a parabola, label the vertex, focus, and directrix. If it is
an ellipse, label the vertices and foci. If it is a hyperbola, label the vertices and foci.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41. 42.

For the following exercises, find the polar equation of the conic with focus at the origin and the given eccentricity and
directrix.

43. Directrix: 44. Directrix: 45. Directrix:

46. Directrix: 47. Directrix: 48. Directrix:

49. Directrix: 50. Directrix: 51. Directrix:

52. Directrix: 53. Directrix: 54. Directrix:

55. Directrix:

Extensions

Recall from Rotation of Axes that equations of conics with an term have rotated graphs. For the following exercises,
express each equation in polar form with as a function of

56. 57. 58.

59. 60.
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Chapter Review
Key Terms
angle of rotation an acute angle formed by a set of axes rotated from the Cartesian plane where, if then

is between if then is between and if then
center of a hyperbola the midpoint of both the transverse and conjugate axes of a hyperbola
center of an ellipse the midpoint of both the major and minor axes
conic section any shape resulting from the intersection of a right circular cone with a plane
conjugate axis the axis of a hyperbola that is perpendicular to the transverse axis and has the co-vertices as its

endpoints
degenerate conic sections any of the possible shapes formed when a plane intersects a double cone through the

apex. Types of degenerate conic sections include a point, a line, and intersecting lines.
directrix a line perpendicular to the axis of symmetry of a parabola; a line such that the ratio of the distance between

the points on the conic and the focus to the distance to the directrix is constant
eccentricity the ratio of the distances from a point on the graph to the focus and to the directrix represented

by where is a positive real number
ellipse the set of all points in a plane such that the sum of their distances from two fixed points is a constant
foci plural of focus
focus (of a parabola) a fixed point in the interior of a parabola that lies on the axis of symmetry
focus (of an ellipse) one of the two fixed points on the major axis of an ellipse such that the sum of the distances from

these points to any point on the ellipse is a constant
hyperbola the set of all points in a plane such that the difference of the distances between and the foci is a

positive constant
latus rectum the line segment that passes through the focus of a parabola parallel to the directrix, with endpoints on

the parabola
major axis the longer of the two axes of an ellipse
minor axis the shorter of the two axes of an ellipse
nondegenerate conic section a shape formed by the intersection of a plane with a double right cone such that the

plane does not pass through the apex; nondegenerate conics include circles, ellipses, hyperbolas, and parabolas
parabola the set of all points in a plane that are the same distance from a fixed line, called the directrix, and a

fixed point (the focus) not on the directrix
polar equation an equation of a curve in polar coordinates and
transverse axis the axis of a hyperbola that includes the foci and has the vertices as its endpoints

Key Equations

Horizontal ellipse, center at origin

Vertical ellipse, center at origin

Horizontal ellipse, center

Vertical ellipse, center

Hyperbola, center at origin, transverse axis on x-axis

Hyperbola, center at origin, transverse axis on y-axis

Hyperbola, center at transverse axis parallel to x-axis
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Hyperbola, center at transverse axis parallel to y-axis

Parabola, vertex at origin, axis of symmetry on x-axis

Parabola, vertex at origin, axis of symmetry on y-axis

Parabola, vertex at axis of symmetry on x-axis

Parabola, vertex at axis of symmetry on y-axis

General Form equation of a conic section

Rotation of a conic section

Angle of rotation

Key Concepts
12.1 The Ellipse

• An ellipse is the set of all points in a plane such that the sum of their distances from two fixed points is a
constant. Each fixed point is called a focus (plural: foci).

• When given the coordinates of the foci and vertices of an ellipse, we can write the equation of the ellipse in standard
form. See Example 1 and Example 2.

• When given an equation for an ellipse centered at the origin in standard form, we can identify its vertices, co-
vertices, foci, and the lengths and positions of the major and minor axes in order to graph the ellipse. See Example 3
and Example 4.

• When given the equation for an ellipse centered at some point other than the origin, we can identify its key features
and graph the ellipse. See Example 5 and Example 6.

• Real-world situations can be modeled using the standard equations of ellipses and then evaluated to find key
features, such as lengths of axes and distance between foci. See Example 7.

12.2 The Hyperbola

• A hyperbola is the set of all points in a plane such that the difference of the distances between and the
foci is a positive constant.

• The standard form of a hyperbola can be used to locate its vertices and foci. See Example 1.
• When given the coordinates of the foci and vertices of a hyperbola, we can write the equation of the hyperbola in

standard form. See Example 2 and Example 3.
• When given an equation for a hyperbola, we can identify its vertices, co-vertices, foci, asymptotes, and lengths and

positions of the transverse and conjugate axes in order to graph the hyperbola. See Example 4 and Example 5.
• Real-world situations can be modeled using the standard equations of hyperbolas. For instance, given the

dimensions of a natural draft cooling tower, we can find a hyperbolic equation that models its sides. See Example 6.

12.3 The Parabola

• A parabola is the set of all points in a plane that are the same distance from a fixed line, called the directrix,
and a fixed point (the focus) not on the directrix.

• The standard form of a parabola with vertex and the x-axis as its axis of symmetry can be used to graph the
parabola. If the parabola opens right. If the parabola opens left. See Example 1.

• The standard form of a parabola with vertex and the y-axis as its axis of symmetry can be used to graph the
parabola. If the parabola opens up. If the parabola opens down. See Example 2.

• When given the focus and directrix of a parabola, we can write its equation in standard form. See Example 3.
• The standard form of a parabola with vertex and axis of symmetry parallel to the x-axis can be used to graph
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the parabola. If the parabola opens right. If the parabola opens left. See Example 4.
• The standard form of a parabola with vertex and axis of symmetry parallel to the y-axis can be used to graph

the parabola. If the parabola opens up. If the parabola opens down. See Example 5.
• Real-world situations can be modeled using the standard equations of parabolas. For instance, given the diameter

and focus of a cross-section of a parabolic reflector, we can find an equation that models its sides. See Example 6.

12.4 Rotation of Axes

• Four basic shapes can result from the intersection of a plane with a pair of right circular cones connected tail to tail.
They include an ellipse, a circle, a hyperbola, and a parabola.

• A nondegenerate conic section has the general form where and are
not all zero. The values of and determine the type of conic. See Example 1.

• Equations of conic sections with an term have been rotated about the origin. See Example 2.
• The general form can be transformed into an equation in the and coordinate system without the term.

See Example 3 and Example 4.
• An expression is described as invariant if it remains unchanged after rotating. Because the discriminant is invariant,

observing it enables us to identify the conic section. See Example 5.

12.5 Conic Sections in Polar Coordinates

• Any conic may be determined by a single focus, the corresponding eccentricity, and the directrix. We can also define
a conic in terms of a fixed point, the focus at the pole, and a line, the directrix, which is perpendicular to the
polar axis.

• A conic is the set of all points where eccentricity is a positive real number. Each conic may be written in
terms of its polar equation. See Example 1.

• The polar equations of conics can be graphed. See Example 2, Example 3, and Example 4.
• Conics can be defined in terms of a focus, a directrix, and eccentricity. See Example 5 and Example 6.
• We can use the identities and to convert the equation for a conic from

polar to rectangular form. See Example 7.

Exercises
Review Exercises
The Ellipse

For the following exercises, write the equation of the ellipse in standard form. Then identify the center, vertices, and foci.

1. 2. 3.

4.

For the following exercises, graph the ellipse, noting center, vertices, and foci.

5. 6. 7.

8.
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For the following exercises, use the given information to find the equation for the ellipse.

9. Center at focus at
vertex at

10. Center at vertex at
focus at

11. A whispering gallery is to
be constructed such that
the foci are located 35 feet
from the center. If the
length of the gallery is to
be 100 feet, what should
the height of the ceiling
be?

The Hyperbola

For the following exercises, write the equation of the hyperbola in standard form. Then give the center, vertices, and foci.

12. 13. 14.

15.

For the following exercises, graph the hyperbola, labeling vertices and foci.

16. 17. 18.

19.

For the following exercises, find the equation of the hyperbola.

20. Center at vertex at
focus at

21. Foci at and
vertex at

The Parabola

For the following exercises, write the equation of the parabola in standard form. Then give the vertex, focus, and
directrix.

22. 23. 24.

25.

For the following exercises, graph the parabola, labeling vertex, focus, and directrix.

26. 27. 28.

29.
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For the following exercises, write the equation of the parabola using the given information.

30. Focus at directrix
is

31. Focus at directrix is 32. A cable TV receiving dish is
the shape of a paraboloid
of revolution. Find the
location of the receiver,
which is placed at the
focus, if the dish is 5 feet
across at its opening and
1.5 feet deep.

Rotation of Axes

For the following exercises, determine which of the conic sections is represented.

33. 34.

35.

For the following exercises, determine the angle that will eliminate the term, and write the corresponding equation
without the term.

36. 37.

For the following exercises, graph the equation relative to the system in which the equation has no term.

38. 39.

40.

Conic Sections in Polar Coordinates

For the following exercises, given the polar equation of the conic with focus at the origin, identify the eccentricity and
directrix.

41. 42. 43.

44.

For the following exercises, graph the conic given in polar form. If it is a parabola, label the vertex, focus, and directrix. If
it is an ellipse or a hyperbola, label the vertices and foci.

45. 46. 47.

48.
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For the following exercises, given information about the graph of a conic with focus at the origin, find the equation in
polar form.

49. Directrix is and
eccentricity

50. Directrix is and
eccentricity

Practice Test
For the following exercises, write the equation in standard form and state the center, vertices, and foci.

1. 2.

For the following exercises, sketch the graph, identifying the center, vertices, and foci.

3. 4. 5. Write the standard form
equation of an ellipse with a
center at vertex at

and focus at

6. A whispering gallery is to be
constructed with a length of
150 feet. If the foci are to be
located 20 feet away from
the wall, how high should
the ceiling be?

For the following exercises, write the equation of the hyperbola in standard form, and give the center, vertices, foci, and
asymptotes.

7. 8.

For the following exercises, graph the hyperbola, noting its center, vertices, and foci. State the equations of the
asymptotes.

9. 10. 11. Write the standard form
equation of a hyperbola
with foci at and

and a vertex at

For the following exercises, write the equation of the parabola in standard form, and give the vertex, focus, and equation
of the directrix.

12. 13.

For the following exercises, graph the parabola, labeling the vertex, focus, and directrix.

14. 15. 16. Write the equation of a
parabola with a focus at

and directrix
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17. A searchlight is shaped like
a paraboloid of revolution.
If the light source is
located 1.5 feet from the
base along the axis of
symmetry, and the depth
of the searchlight is 3 feet,
what should the width of
the opening be?

For the following exercises, determine which conic section is represented by the given equation, and then determine the
angle that will eliminate the term.

18. 19.

For the following exercises, rewrite in the system without the term, and graph the rotated graph.

20. 21.

For the following exercises, identify the conic with focus at the origin, and then give the directrix and eccentricity.

22. 23.

For the following exercises, graph the given conic section. If it is a parabola, label vertex, focus, and directrix. If it is an
ellipse or a hyperbola, label vertices and foci.

24. 25. 26. Find a polar equation of
the conic with focus at the
origin, eccentricity of
and directrix:
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Important Proofs and Derivations
Product Rule

Proof:

Let and

Write in exponent form.

and

Multiply.

Change of Base Rule

where and are positive, and

Proof:

Let

Write in exponent form.

Take the of both sides.

When

Heron’s Formula

where

Proof:

Let and be the sides of a triangle, and be the height.

PROOFS, IDENTITIES, AND TOOLKIT FUNCTIONSA
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So .

We can further name the parts of the base in each triangle established by the height such that

Using the Pythagorean Theorem, and

Since then Expanding, we find that

We can then add to each side of the equation to get

Substitute this result into the equation yields

Then replacing with gives

Solve for to get

Since we get an expression in terms of and

Therefore,

And since then
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Properties of the Dot Product

Proof:

Proof:

Proof:

Standard Form of the Ellipse centered at the Origin

Derivation

An ellipse consists of all the points for which the sum of distances from two foci is constant:
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Consider a vertex.

Then,

Consider a covertex.

Then
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Let

Because then

Standard Form of the Hyperbola

Derivation

A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distances between two
fixed points is constant.
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Diagram 1: The difference of the distances from Point P to the foci is constant:

Diagram 2: When the point is a vertex, the difference is

Define as a positive number such that
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Trigonometric Identities

Pythagorean Identities

Even-Odd Identities

Cofunction Identities

Fundamental Identities

Sum and Difference Identities

Double-Angle Formulas

Table A1
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Half-Angle Formulas

Reduction Formulas

Product-to-Sum Formulas

Sum-to-Product Formulas

Law of Sines

Law of Cosines

Table A1
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ToolKit Functions

Figure A1

Figure A2
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Figure A3

Trigonometric Functions
Unit Circle

Figure A4

Angle

Cosine 1 0

Table A2
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Angle

Sine 0 1

Tangent 0 1 Undefined

Secant 1 2 Undefined

Cosecant Undefined 2 1

Cotangent Undefined 1 0

Table A2
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Answer Key
Chapter 1
Try It
1.1 Real Numbers: Algebra Essentials

ⓐ ⓑ ⓒ1. ⓐ 4 (or 4.0), terminating;

ⓑ repeating;

ⓒ –0.85, terminating

2. ⓐ rational and repeating;

ⓑ rational and terminating;

ⓒ irrational;

ⓓ rational and terminating;

ⓔ irrational

3.

ⓐ positive, irrational; right

ⓑ negative, rational; left

ⓒ positive, rational; right

ⓓ negative, irrational; left

ⓔ positive, rational; right

4. 5.
N W I Q Q'

a. X X

b. 0 X X X

c. X X X X

d. X

e.
4.763763763...

X

ⓐ 10 ⓑ 2 ⓒ 4.5 ⓓ 25

ⓔ 26
6.

ⓐ 11, commutative
property of multiplication,
associative property of
multiplication, inverse
property of multiplication,
identity property of
multiplication;

ⓑ 33, distributive property;

ⓒ 26, distributive property;

ⓓ commutative
property of addition,
associative property of
addition, inverse property of
addition, identity property of
addition;

ⓔ 0, distributive property,
inverse property of addition,
identity property of addition

7. 8.
Constants Variables

a.

b. 2(L + W) 2 L, W

c. 4

ⓐ 5; ⓑ 11; ⓒ 9; ⓓ 269.

ⓐ 4; ⓑ 11; ⓒ ;

ⓓ 1728; ⓔ 3

10. 11. 1,152 cm2 ⓐ
ⓑ ⓒ

ⓓ

12.

13.
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1.2 Exponents and Scientific Notation
ⓐ ⓑ ⓒ1. ⓐ ⓑ

ⓒ
2. ⓐ ⓑ

ⓒ
3.

ⓐ ⓑ ⓒ ⓓ4. ⓐ ⓑ ⓒ5. ⓐ ⓑ6.

ⓐ ⓑ
ⓒ ⓓ
ⓔ

7. ⓐ ⓑ ⓒ
ⓓ

ⓔ

8. ⓐ ⓑ ⓒ
ⓓ ⓔ ⓕ

9.

ⓐ
ⓑ
ⓒ
ⓓ
ⓔ

10. ⓐ
ⓑ
ⓒ

ⓓ

11. ⓐ
ⓑ
ⓒ
ⓓ
ⓔ

12.

13. Number of cells:
length of a cell:
m; total length:
m or m.

1.3 Radicals and Rational Exponents

ⓐ ⓑ ⓒ ⓓ1. 2. Notice the
absolute value signs around
x and y? That’s because
their value must be positive!

3.

4. We do not need the

absolute value signs for
because that term will
always be nonnegative.

5. 6.

7. 8. 9.

ⓐ ⓑ ⓒ10. 11. 12.

13.

1.4 Polynomials
1. The degree is 6, the leading

term is and the leading
coefficient is

2. 3.
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4. 5. 6.

7. 8.

1.5 Factoring Polynomials
1. 2. ⓐ

ⓑ
3.

4. 5. 6.

7. 8.

1.6 Rational Expressions
1. 2. 3.

4. 5.

1.1 Section Exercises
1. irrational number. The

square root of two does not
terminate, and it does not
repeat a pattern. It cannot
be written as a quotient of
two integers, so it is
irrational.

3. The Associative Properties
state that the sum or
product of multiple
numbers can be grouped
differently without affecting
the result. This is because
the same operation is
performed (either addition
or subtraction), so the terms
can be re-ordered.

5.

7. 9. 11. 9

13. -2 15. 4 17. 0

19. 9 21. 25 23.

25. 17 27. 4 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.
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49. 51. 53.

55. irrational number 57. 59. inverse property of
addition

61. 68.4 63. true 65. irrational

67. rational

1.2 Section Exercises
1. No, the two expressions are

not the same. An exponent
tells how many times you
multiply the base. So is
the same as which
is 8. is the same as
which is 9.

3. It is a method of writing very
small and very large
numbers.

5. 81

7. 243 9. 11.

13. 1 15. 17.

19. 21. 23. 16,000,000,000

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 0.00135 m 47.

49. 0.00000000003397 in. 51. 12,230,590,464 53.

55. 57.

59. 0.000000000000000000000000000000000662606957
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1.3 Section Exercises
1. When there is no index, it is

assumed to be 2 or the
square root. The expression
would only be equal to the
radicand if the index were 1.

3. The principal square root is
the nonnegative root of the
number.

5. 16

7. 10 9. 14 11.

13. 15. 25 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.

61. 63. 65. 500 feet

67. 69. 71.

73.

1.4 Section Exercises
1. The statement is true. In

standard form, the
polynomial with the highest
value exponent is placed
first and is the leading term.
The degree of a polynomial
is the value of the highest
exponent, which in standard
form is also the exponent of
the leading term.

3. Use the distributive
property, multiply, combine
like terms, and simplify.

5. 2
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7. 8 9. 2 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53. m2

55. 57.

1.5 Section Exercises
1. The terms of a polynomial do

not have to have a common
factor for the entire polynomial
to be factorable. For example,

and don’t have a
common factor, but the whole
polynomial is still factorable:

3. Divide the term into the
sum of two terms, factor
each portion of the
expression separately, and
then factor out the GCF of
the entire expression.

5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.
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55. 57. 59.

1.6 Section Exercises
1. You can factor the

numerator and
denominator to see if any of
the terms can cancel one
another out.

3. True. Multiplication and
division do not require
finding the LCD because the
denominators can be
combined through those
operations, whereas
addition and subtraction
require like terms.

5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57.

Review Exercises
1. 3. 53 5.

7. 9. whole 11. irrational

13. 15. 17.

19. 21. 23. 14
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25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.

61. 63. 65.

67. 69.

Practice Test
1. rational 3. 5. 3,141,500

7. 9. 9 11.

13. 21 15. 17.

19. 21. 23.

25. 27. 29.
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Chapter 2
Try It
2.1 The Rectangular Coordinate Systems and Graphs
1. 2. x-intercept is y-intercept

is
3.

4.

2.2 Linear Equations in One Variable
1. 2. 3.

4. 5. Excluded values

are and

6.

7. 8. 9.

10. Horizontal line: 11. Parallel lines: equations are
written in slope-intercept form.

12.

1341



2.3 Models and Applications
1. 11 and 25 2. 3. 45 mi/h

4. cm, cm 5. 250 ft2

2.4 Complex Numbers
1. 2. 3.

4. 5. 6.

7.

2.5 Quadratic Equations
1. 2. 3.

4. 5. 6.

7. 8. 9. units

2.6 Other Types of Equations
1. 2. 3.

4. 5. extraneous solution 6. extraneous solution

7. 8. 9.

10. is not a solution.
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2.7 Linear Inequalities and Absolute Value Inequalities
1. 2. ∞ ∞ 3.

4. 5. ∞ 6. ∞

7. 8. 9.

10. or in interval
notation, this would be

∞ ∞

2.1 Section Exercises
1. Answers may vary. Yes. It is

possible for a point to be on
the x-axis or on the y-axis
and therefore is considered
to NOT be in one of the
quadrants.

3. The y-intercept is the point
where the graph crosses the
y-axis.

5. The x-intercept is and
the y-intercept is

7. The x-intercept is and
the y-intercept is

9. The x-intercept is and
the y-intercept is

11.

13. 15. 17.

19. 21. 23.

25. 27. 29.
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31.

not collinear

33. 35.

1

0 2

3 3

6 4

37.
x y

–3 0

0 1.5

3 3

39. 41.

43. 45. 47.

49. 51. 53.

55. shorter 57. 59. Midpoint of each diagonal
is the same point .
Note this is a characteristic
of rectangles, but not other
quadrilaterals.

61. 37mi 63. 54 ft
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2.2 Section Exercises
1. It means they have the same

slope.
3. The exponent of the

variable is 1. It is called a
first-degree equation.

5. If we insert either value into
the equation, they make an
expression in the equation
undefined (zero in the
denominator).

7. 9. 11.

13. 15. 17.

19. when we solve this
we get which is
excluded, therefore NO
solution

21. 23.

25. 27. 29.

31. 33. 35.

37.

Parallel

39.

Perpendicular

41.

43. 45.     47.
Answers may vary.

49.
Answers may vary.

51. 53.

Yes they are perpendicular.

55. 30 ft 57. $57.50 59. 220 mi
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2.3 Section Exercises
1. Answers may vary. Possible

answers: We should define
in words what our variable is
representing. We should
declare the variable. A
heading.

3. 5.

7. Ann: Beth: 9. 11. 300 min

13. 15. 6 devices 17.

19. 4 h 21. She traveled for 2 h at 20
mi/h, or 40 miles.

23. $5,000 at 8% and $15,000 at
12%

25. 27. Plan A 29.

31. or 0.8 33. 35.

37. 39. 41. length = 360 ft; width = 160
ft

43. 405 mi 45. 47. 28.7

49. 51. 53.

2.4 Section Exercises
1. Add the real parts together

and the imaginary parts
together.

3. Possible answer: times
equals -1, which is not
imaginary.

5.

7. 9. 11.
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13. 15. 17.

19. 21. 23.

25. 27. 25 29.

31. 33. 35.

37. 39. 41.

43. 128i 45. 47.

49. 0 51. 53.

55.

2.5 Section Exercises
1. It is a second-degree

equation (the highest
variable exponent is 2).

3. We want to take advantage
of the zero property of
multiplication in the fact
that if then it must
follow that each factor
separately offers a solution
to the product being zero:

5. One, when no linear term is
present (no x term), such as

Two, when the
equation is already in the
form

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. Not real 35. One rational
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37. Two real; rational 39. 41.

43. 45. and 47. and

49. 51. 7 ft. and
17 ft.

53. maximum at

55. The quadratic equation would be

The two values of are 20 and 60.

57. 3 feet

2.6 Section Exercises
1. This is not a solution to the

radical equation, it is a value
obtained from squaring
both sides and thus
changing the signs of an
equation which has caused
it not to be a solution in the
original equation.

3. They are probably trying to
enter negative 9, but taking
the square root of is not
a real number. The negative
sign is in front of this, so
your friend should be taking
the square root of 9, cubing
it, and then putting the
negative sign in front,
resulting in

5. A rational exponent is a
fraction: the denominator of
the fraction is the root or
index number and the
numerator is the power to
which it is raised.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47. 10 in.

49. 90 kg
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2.7 Section Exercises
1. When we divide both sides

by a negative it changes the
sign of both sides so the
sense of the inequality sign
changes.

3. ∞ ∞ 5. We start by finding the
x-intercept, or where the
function = 0. Once we have
that point, which is we
graph to the right the
straight line graph
and then when we draw it to
the left we plot positive y
values, taking the absolute
value of them.

7. ∞ 9. ∞ 11. ∞

13. ∞ 15. All real numbers ∞ ∞ 17. ∞ ∞

19. ∞ ∞ 21. No solution 23.

25. 27.

29.
  ∞

31.

   

∞ ∞
33. ∞ ∞
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35. 37. It is never less than zero.
No solution.

39. Where the blue line is
above the orange line;
point of intersection is

∞

41. Where the blue line is
above the orange line;
always. All real numbers.

∞ ∞

43. 45. ∞

47. 49. 51.

53. ∞ 55. Where the blue is below
the orange; always. All real

numbers. ∞ ∞

57. Where the blue is below
the orange;
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59. 61. 63.

Review Exercises
1. x-intercept:

y-intercept:
3. 5.

7. 9. midpoint is 11.
x y

0 −2

3 2

6 6

13. 15. 17. No solution

19. 21. 23. females 17, males 56

25. 84 mi 27. 29. horizontal component
vertical component

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.
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61. ∞ 63. 65. No solution

67. 69. Where the blue is below
the orange line; point of
intersection is

∞

Practice Test
1.

x y

0 2

2 5

4 8

3. 5. ∞

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.
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Chapter 3
Try It
3.1 Functions and Function Notation

ⓐ yes

ⓑ yes (Note: If two players
had been tied for, say, 4th
place, then the name would
not have been a function of
rank.)

1. 2. 3. yes

4. 5. 6.

7. 8. or ⓐ yes, because each bank
account has a single balance
at any given time;

ⓑ no, because several
bank account numbers may
have the same balance;

ⓒ no, because the same
output may correspond to
more than one input.

9.

ⓐ Yes, letter grade is a
function of percent grade;

ⓑ No, it is not one-to-one.
There are 100 different
percent numbers we could
get but only about five
possible letter grades, so
there cannot be only one
percent number that
corresponds to each letter
grade.

10. 11. yes 12. No, because it does not
pass the horizontal line
test.

3.2 Domain and Range
1. 2. ∞ ∞ 3. ∞ ∞

4. ∞ ⓐ values that are less than
or equal to –2, or values that
are greater than or equal to
–1 and less than 3

ⓑ

ⓒ ∞

5. 6. domain =[1950,2002] range
= [47,000,000,89,000,000]
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7. domain: ∞ range:

∞

8.

3.3 Rates of Change and Behavior of Graphs
1.

per year.

2. 3.

4. The local maximum appears to
occur at and the local
minimum occurs at
The function is increasing on

∞ ∞ and

decreasing on

3.4 Composition of Functions

1.

No, the functions are not the same.

2. A gravitational force is still a
force, so makes
sense as the acceleration of
a planet at a distance r from
the Sun (due to gravity), but

does not make
sense.

3. and 4. ⓐ 8 ⓑ 205.
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6. ∞ 7. Possible answer:

3.5 Transformation of Functions
1. 2. The graphs of and are

shown below. The
transformation is a horizontal
shift. The function is shifted to
the left by 2 units.

3.

4. ⓐ

ⓑ

5. ⓐ

-2 0 2 4

ⓑ

-2 0 2 4

15 10 5 unknown

6.

7.

Notice: looks the
same as .

8. even 9.
2 4 6 8

9 12 15 0
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10. 11. so using the
square root function we

get

3.6 Absolute Value Functions
1. using the variable for

passing,
2. 3. or

3.7 Inverse Functions
1. 2. Yes 3. Yes

4. The domain of function

is ∞ and the range

of function is ∞

ⓐ In 60
minutes, 50 miles are
traveled.

ⓑ To travel
60 miles, it will take 70
minutes.

5. ⓐ 3 ⓑ 5.66.

7. 8.

∞

∞

9.

3.1 Section Exercises
1. A relation is a set of ordered

pairs. A function is a special
kind of relation in which no
two ordered pairs have the
same first coordinate.

3. When a vertical line
intersects the graph of a
relation more than once,
that indicates that for that
input there is more than one
output. At any particular
input value, there can be
only one output if the
relation is to be a function.

5. When a horizontal line
intersects the graph of a
function more than once,
that indicates that for that
output there is more than
one input. A function is one-
to-one if each output
corresponds to only one
input.

7. function 9. function 11. function

13. function 15. function 17. function

19. function 21. function 23. function
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25. not a function 27. 29.

31. 33. 35. a. b.

37. a. b. or ⓐ
ⓑ ⓒ

39. 41. not a function

43. function 45. function 47. function

49. function 51. function ⓐ
ⓑ or

53.

55. not a function so it is also
not a one-to-one function

57. one-to- one function 59. function, but not one-to-
one

61. function 63. function 65. not a function

67. 69.

71.   

73. 75. 20

77. 79. 81.
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83. 85. 87.

ⓐ
ⓑ The number of cubic
yards of dirt required for a
garden of 100 square feet
is 1.

89. ⓐ The height of a rocket
above ground after 1
second is 200 ft.

ⓑ The height of a rocket
above ground after 2
seconds is 350 ft.

91.

3.2 Section Exercises
1. The domain of a function

depends upon what values
of the independent variable
make the function
undefined or imaginary.

3. There is no restriction on
for because you
can take the cube root of
any real number. So the
domain is all real numbers,

∞ ∞ When dealing with

the set of real numbers, you
cannot take the square root
of negative numbers. So
-values are restricted for

to nonnegative
numbers and the domain is

∞

5. Graph each formula of the
piecewise function over its
corresponding domain. Use
the same scale for the
-axis and -axis for each
graph. Indicate inclusive
endpoints with a solid circle
and exclusive endpoints
with an open circle. Use an

arrow to indicate ∞ or ∞
Combine the graphs to find
the graph of the piecewise
function.

7. ∞ ∞ 9. ∞ 11. ∞ ∞

13. ∞ ∞ 15. ∞ ∞ 17. ∞ ∞

19. ∞ ∞ 21. ∞ 23. ∞

25. ∞ ∞ 27. domain: range 29. domain: range:

31. domain: range: 33. domain: ∞ range:

∞
35. domain:

range:
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37. domain: ∞ range:

∞
39. domain: ∞ ∞ 41. domain: ∞ ∞

43. domain: ∞ ∞ 45. domain: ∞ ∞

47. 49.

51. 53. domain: ∞ ∞
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55.

window: range:

window: range:

57. 59. Many answers. One
function is

ⓐ The fixed cost is $500.

ⓑ The cost of making 25
items is $750.

ⓒ The domain is [0, 100]
and the range is [500,
1500].

61.

3.3 Section Exercises
1. Yes, the average rate of

change of all linear
functions is constant.

3. The absolute maximum and
minimum relate to the
entire graph, whereas the
local extrema relate only to
a specific region around an
open interval.

5.

7. 3 9. 11.

13. 15. 17.
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19. increasing on

∞ ∞
decreasing on

21. increasing on

∞
decreasing on

∞

23. local maximum:
local minimum:

25. absolute maximum at
approximately
absolute minimum at
approximately

ⓐ –3000 ⓑ –125027. 29. -4

31. 27 33. –0.167 35. Local minimum at

decreasing on ∞
increasing on ∞

37. Local minimum at
decreasing on
increasing on

∞

39. Local maximum at
local minima at
and

decreasing on

∞ and

increasing
on and

∞

41. A

43. 45. 2.7 gallons per minute 47. approximately –0.6
milligrams per day

3.4 Section Exercises
1. Find the numbers that make

the function in the
denominator equal to
zero, and check for any
other domain restrictions on

and such as an even-
indexed root or zeros in the
denominator.

3. Yes. Sample answer: Let
Then

and

So
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5. domain:

∞ ∞

domain:

∞ ∞

domain: ∞ ∞

domain:

∞ ∞

7.

domain: ∞ ∞

domain: ∞ ∞

domain:

∞ ∞

domain: ∞ ∞

9.

domain: ∞

domain: ∞

domain: ∞

domain:

∞

ⓐ 3 ⓑ
ⓒ
ⓓ

ⓔ

11. 13.

15. 17.

19. ⓐ
ⓑ ∞

21. ⓐ ∞

ⓑ ∞ ∞

ⓒ ∞

23.

25. ∞ 27. sample: 29. sample:

31. sample: 33. sample: 35. sample:

37. sample: 39. sample: 41. sample:

43. 2 45. 5 47. 4

49. 0 51. 2 53. 1

55. 4 57. 4 59. 9

61. 4 63. 2 65. 3

67. 11 69. 0 71. 7
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73. 75. 77.

79. 81. 2 83. ∞ ∞

85. False 87. ; 89.

91. c 93. and

square inches

95.
square units

ⓐ

ⓑ 3.38 hours

97.

3.5 Section Exercises
1. A horizontal shift results

when a constant is added to
or subtracted from the
input. A vertical shifts results
when a constant is added to
or subtracted from the
output.

3. A horizontal compression
results when a constant
greater than 1 is multiplied
by the input. A vertical
compression results when a
constant between 0 and 1 is
multiplied by the output.

5. For a function substitute
for in

Simplify. If the resulting
function is the same as the
original function,

then the
function is even. If the
resulting function is the
opposite of the original
function,
then the original function is
odd. If the function is not
the same or the opposite,
then the function is neither
odd nor even.

7. 9. 11. The graph of is a
horizontal shift to the left
43 units of the graph of

13. The graph of is a
horizontal shift to the right
4 units of the graph of

15. The graph of is a
vertical shift up 8 units of
the graph of

17. The graph of is a
vertical shift down 7 units
of the graph of

19. The graph of
is a horizontal shift to the
left 4 units and a vertical
shift down 1 unit of the
graph of

21. decreasing on ∞
and increasing on ∞

23. decreasing on ∞
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25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47. even

49. odd 51. even 53. The graph of is a vertical
reflection (across the
-axis) of the graph of

55. The graph of is a vertical
stretch by a factor of 4 of
the graph of

57. The graph of is a
horizontal compression by
a factor of of the graph
of

59. The graph of is a
horizontal stretch by a
factor of 3 of the graph of

61. The graph of is a
horizontal reflection across
the -axis and a vertical
stretch by a factor of 3 of
the graph of

63. 65.
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67. 69. The graph of the function
is shifted to the left 1

unit, stretched vertically by a
factor of 4, and shifted down 5
units.

71. The graph of is
stretched vertically by a factor
of 2, shifted horizontally 4 units
to the right, reflected across the
horizontal axis, and then
shifted vertically 3 units up.

73. The graph of the function
is compressed

vertically by a factor of

75. The graph of the function is
stretched horizontally by a
factor of 3 and then shifted
vertically downward by 3 units.

77. The graph of is
shifted right 4 units and then
reflected across the vertical line
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79. 81.

3.6 Section Exercises
1. Isolate the absolute value

term so that the equation is
of the form Form
one equation by setting the
expression inside the
absolute value symbol,
equal to the expression on
the other side of the
equation, Form a second
equation by setting equal
to the opposite of the
expression on the other side
of the equation, Solve
each equation for the
variable.

3. The graph of the absolute
value function does not
cross the -axis, so the
graph is either completely
above or completely below
the -axis.

5. The distance from x to 8 can
be represented using the
absolute value statement: ∣
x − 8 ∣ = 4.

7. ∣ x − 10 ∣ ≥ 15 9. There are no x-intercepts. 11. (−4, 0) and (2, 0)

13. 15. 17.

19. 21. 23.
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25. 27. 29.

31. 33. range: 35.

37. There is no solution for
that will keep the function
from having a -intercept.
The absolute value
function always crosses the

-intercept when

39. 41.

3.7 Section Exercises
1. Each output of a function

must have exactly one
output for the function to be
one-to-one. If any horizontal
line crosses the graph of a
function more than once,
that means that -values
repeat and the function is
not one-to-one. If no
horizontal line crosses the
graph of the function more
than once, then no -values
repeat and the function is
one-to-one.

3. Yes. For example,
is its own inverse.

5. Given a function
solve for in terms of
Interchange the and
Solve the new equation for

The expression for is the
inverse,

7. 9. 11.
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13. domain of

∞
15. domain of

∞
ⓐ and

ⓑ This tells us that and
are inverse functions

16.

17. 19. one-to-one 21. one-to-one

23. not one-to-one 25. 27.

29. 31. 33.

35. 37. 39.

41.
1 4 7 12 16

3 6 9 13 14

43. 45.
Given the Fahrenheit
temperature, this
formula allows you to
calculate the Celsius
temperature.

47.
The time for the car to
travel 180 miles is 3.6
hours.

Review Exercises
1. function 3. not a function 5.

7. one-to-one 9. function 11. function
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13. 15. 17. or

19. 21. ∞ ∞ 23.

25. 27. increasing ∞

decreasing ∞

29. increasing
constant

∞ ∞

31. local minimum
local maximum

33.

35. 37.

39. 41. 43. sample:

45. 47. 49.
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51. 53. 55.

57. even 59. odd 61. even

63. 65. 67.

69. 71. 73. The function is one-to-one.

75.

Practice Test
1. The relation is a function. 3. −16 5. The graph is a parabola and

the graph fails the
horizontal line test.

7. 9. 11.
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13. 15. 17.

19. 21. ∞ ∞ 23.

25. 27. 29.

31. yes 33.

Chapter 4
Try It
4.1 Linear Functions

1.
decreasing because

2.

3. 4. 5.

6. Possible answers include
or

7. 8.

1371



ⓐ
ⓑ

9. 10.

4.2 Modeling with Linear Functions
1. ⓐ

ⓑ The y-intercept is
. If the company

does not produce a single
doughnut, they still incur a
cost of $25,000.

2. ⓐ 41,100 ⓑ 2020 3. 21.57 miles

4.3 Fitting Linear Models to Data
1. 2. 150.871 billion gallons;

extrapolation

4.1 Section Exercises
1. Terry starts at an elevation

of 3000 feet and descends
70 feet per second.

3. 5. The point of intersection is
This is because for

the horizontal line, all of the
coordinates are and for

the vertical line, all of the
coordinates are The point
of intersection is on both
lines and therefore will have
these two characteristics.

7. Yes 9. Yes 11. No

13. Yes 15. Increasing 17. Decreasing

19. Decreasing 21. Increasing 23. Decreasing

25. 2 27. –2 29.

31. 33. 35.

37. perpendicular 39. parallel 41.
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43. 45. 47. Line 1: m = –10 Line 2: m =
–10 Parallel

49. Line 1: m = –2 Line 2: m = 1
Neither

51.

53. 55. 57. 0

59. 61. 63.

65. F 67. C 69. A

71. 73. 75.

77. 79. 81.
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83. 85. 87.

89. Linear, 91. Linear, 93. Linear,

95. Linear, 97. 99.

ⓐ

ⓑ

101. 103. 105.

107. 109. 111.

113. 115. $45 per training session. 117. The rate of change is 0.1.
For every additional
minute talked, the
monthly charge increases
by $0.1 or 10 cents. The
initial value is 24. When
there are no minutes
talked, initially the charge
is $24.
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119. The slope is –400. this
means for every year
between 1960 and 1989,
the population dropped
by 400 per year in the city.

121. C

4.2 Section Exercises
1. Determine the independent

variable. This is the variable
upon which the output
depends.

3. To determine the initial
value, find the output when
the input is equal to zero.

5. 6 square units

7. 20.01 square units 9. 2,300 11. 64,170

13. 15. (–30, 0) Thirty years before
the start of this model, the
town had no citizens. (0,
75,000) Initially, the town
had a population of 75,000.

17. Ten years after the model
began

19. 21. : The x-intercept is
not a plausible set of data
for this model because it
means the baby weighed 0
pounds 15 months prior to
birth. : The baby
weighed 7.5 pounds at
birth.

23. At age 5.8 months

25. 27. In roughly 59
years, the number of
people inflicted with the
common cold would be 0.

Initially there
were 12,025 people
afflicted by the common
cold.

29. 2063

31. 33. In 2070, the company’s
profit will be zero.

35.

37. (10, 0) In the year 1990, the
company’s profits were
zero

39. Hawaii 41. During the year 1933

43. $105,620 ⓐ 696 people ⓑ 4 years

ⓒ 174 people per year

ⓓ 305 people

ⓔ P(t) = 305 + 174t

ⓕ 2,219 people

45. ⓐ C(x) = 0.15x + 10

ⓑ The flat monthly fee is
$10 and there is a $0.15 fee
for each additional minute
used

ⓒ $113.05

47.
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49. P(t) = 190t + 4,360 ⓐ
ⓑ 5.5 billion cubic feet

ⓒ During the year 2017

51. 53. More than 133 minutes

55. More than $42,857.14
worth of jewelry

57. More than $66,666.67 in
sales

4.3 Section Exercises
1. When our model no longer

applies, after some value in
the domain, the model itself
doesn’t hold.

3. We predict a value outside
the domain and range of the
data.

5. The closer the number is to
1, the less scattered the
data, the closer the number
is to 0, the more scattered
the data.

7. 61.966 years 9.

No.

11.

No.

13.

Interpolation. About

15.

17. 19.
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21. 23. Yes, trend appears linear
because and will
exceed 12,000 near
midyear, 2016, 24.6 years
since 1992.

25.

27. 29. 31.

33.
Yes, the function is a good fit.

35. If 18,980 units
are sold, the company will
have a profit of zero
dollars.

37. 39. 41.

Review Exercises
1. Yes 3. Increasing 5.

7. 3 9. 11. Not linear.

13. parallel 15. 17. Line 1: Line 2:
Parallel

19. 21. 23. More than 250

25. 118,000 27. ⓐ 800

ⓑ 100 students per year

ⓒ

29.
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31. 18,500 33. $91,625 35. Extrapolation

37. 39. 2023 41.

43. 2027 45. 7,660

Practice Test
1. Yes 3. Increasing 5. y = −1.5x − 6

7. y = −2x − 1 9. No 11. Perpendicular

13. (−7, 0); (0, −2) 15. y = −0.25x + 12 17.

Slope = −1 and y-intercept = 6

19. 150 21. 165,000 23. y = 875x + 10,625
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ⓐ 375

ⓑ dropped an average of
46.875, or about 47 people
per year

ⓒ y = −46.875t + 1250

25. 27. 29. In early 2018

31. y = 0.00455x + 1979.5 33. r = 0.999

Chapter 5
Try It
5.1 Quadratic Functions
1. The path passes through the

origin and has vertex at
so

To
make the shot,
would need to be about 4
but he
doesn’t make it.

2. in
general form;

in
standard form

3. The domain is all real
numbers. The range is

or ∞

4. y-intercept at (0, 13), No
intercepts

ⓐ 3 seconds ⓑ 256 feet

ⓒ 7 seconds
5.

5.2 Power Functions and Polynomial Functions
1. is a power function

because it can be written as
The other

functions are not power
functions.

2. As approaches positive or
negative infinity,
decreases without bound: as

∞ ∞
because of the negative
coefficient.

3. The degree is 6. The leading
term is The leading
coefficient is

4. As

∞ ∞ ∞ ∞
It has the shape of an even degree power
function with a negative coefficient.

5. The leading term is
so it is a degree 3
polynomial. As approaches
positive infinity,
increases without bound; as

approaches negative
infinity, decreases
without bound.
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6. y-intercept
x-intercepts
and

7. There are at most 12
intercepts and at most 11
turning points.

8. The end behavior indicates
an odd-degree polynomial
function; there are 3
intercepts and 2 turning
points, so the degree is odd
and at least 3. Because of
the end behavior, we know
that the lead coefficient
must be negative.

9. The intercepts are
and the

y-intercept is and the
graph has at most 2 turning
points.

5.3 Graphs of Polynomial Functions
1. y-intercept

x-intercepts
and

2. The graph has a zero of –5
with multiplicity 3, a zero of
-1 with multiplicity 2, and a
zero of 3 with multiplicity 4.

3.

4. Because is a polynomial
function and since is
negative and is
positive, there is at least one
real zero between and

5. 6. The minimum occurs at
approximately the point

and the maximum
occurs at approximately the
point

5.4 Dividing Polynomials
1. 2. 3.

5.5 Zeros of Polynomial Functions
1. 2. The zeros are 2, –2, and –4. 3. There are no rational zeros.

4. The zeros are 5. 6. There must be 4, 2, or 0
positive real roots and 0
negative real roots. The
graph shows that there are
2 positive real zeros and 0
negative real zeros.
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7. 3 meters by 4 meters by 7
meters

5.6 Rational Functions
1. End behavior: as

∞ Local

behavior: as

∞ (there are

no x- or y-intercepts)

2.

The function and the
asymptotes are shifted 3 units
right and 4 units down. As

∞ and as

∞

The function is

3.

4. The domain is all real
numbers except and

5. Removable discontinuity at
Vertical asymptotes:

6. Vertical asymptotes at
and horizontal
asymptote at

7. For the transformed reciprocal squared function, we find the
rational form.

Because the numerator is the same degree as the denominator

we know that as ∞ is the

horizontal asymptote. Next, we set the denominator equal to
zero, and find that the vertical asymptote is because as

∞ We then set the numerator equal to 0 and

find the x-intercepts are at and Finally, we
evaluate the function at 0 and find the y-intercept to be at

8. Horizontal asymptote at
Vertical asymptotes at

y-intercept at

x-intercepts at
is a

zero with multiplicity 2, and the
graph bounces off the x-axis at
this point. is a single zero
and the graph crosses the axis
at this point.
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5.7 Inverses and Radical Functions
1.

and

2.

3. 4. 5.

5.8 Modeling Using Variation
1. 2. 3.

5.1 Section Exercises
1. When written in that form,

the vertex can be easily
identified.

3. If then the function
becomes a linear function.

5. If possible, we can use
factoring. Otherwise, we can
use the quadratic formula.

7. Vertex 9.

Vertex

11.
Vertex

13.

Vertex

15. Minimum is and

occurs at Axis of

symmetry is

17. Minimum is and

occurs at Axis of

symmetry is

19. Minimum is and occurs
at Axis of symmetry is

21. Domain is ∞ ∞

Range is ∞

23. Domain is ∞ ∞ Range

is ∞

25. Domain is ∞ ∞ Range

is ∞

27. 29.
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31. 33. 35. Vertex: (3, −10), axis of
symmetry: x = 3, intercepts:

and

37. Vertex: , axis of
symmetry: , intercept:

and

39. 41.

43. 45. 47.

49. 50. 53. The graph is shifted to the
right or left (a horizontal
shift).

55. The suspension bridge has
1,000 feet distance from
the center.

57. Domain is ∞ ∞ Range

is ∞
59. Domain: ∞ ∞ ; range:

∞

61. 63. 65.

67. 75 feet by 50 feet 69. 3 and 3; product is 9 71. The revenue reaches the
maximum value when 1800
thousand phones are
produced.
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73. 2.449 seconds 75. 41 trees per acre

5.2 Section Exercises
1. The coefficient of the power

function is the real number
that is multiplied by the
variable raised to a power.
The degree is the highest
power appearing in the
function.

3. As decreases without
bound, so does As
increases without bound, so
does

5. The polynomial function is
of even degree and leading
coefficient is negative.

7. Power function 9. Neither 11. Neither

13. Degree = 2, Coefficient = –2 15. Degree =4, Coefficient = –2 17. As ∞ ,

∞ ∞ ∞

19. As ∞ ,

∞ ∞ ∞
21. As ∞ ,

∞ ∞ ∞

23. As ∞ ,

∞ ∞ ∞
25. y-intercept is

t-intercepts are
27. y-intercept is

x-intercepts are and

29. y-intercept is
x-intercepts are

and

31. 3 33. 5

35. 3 37. 5 39. Yes. Number of turning
points is 2. Least possible
degree is 3.

41. Yes. Number of turning
points is 1. Least possible
degree is 2.

43. Yes. Number of turning
points is 0. Least possible
degree is 1.

45. Yes. Number of turning
points is 0. Least possible
degree is 1.

47.

10 9,500

100 99,950,000

–10 9,500

–100 99,950,000

As ∞ ,

∞ ∞ ∞

49.

10 –504

100 –941,094

–10 1,716

–100 1,061,106

As ∞ ,

∞ ∞ ∞
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51.

The intercept is The
intercepts are As

∞ ,

∞ ∞ ∞

53.

The intercept is . The
intercepts are

As

∞ ,

∞ ∞ ∞

55.

The intercept is The
intercept is

∞ ,

∞ ∞ ∞

57.

The intercept is The
intercept are

As ∞ ,

∞ ∞ ∞
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59.

The intercept is The
intercepts are

As

∞ ,

∞ ∞ ∞

61. 63.

65. 67. 69.

5.3 Section Exercises
1. The intercept is where the

graph of the function
crosses the axis, and the
zero of the function is the
input value for which

3. If we evaluate the function
at and at and the sign of
the function value changes,
then we know a zero exists
between and

5. There will be a factor raised
to an even power.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. and
Sign change confirms.

27. and
Sign change confirms.

29. and
Sign

change confirms.

31. 0 with multiplicity 2,
with multiplicity 5, 4 with
multiplicity 2

33. 0 with multiplicity 2, –2 with
multiplicity 2

35. with multiplicity 5, 5
with multiplicity 2

37. 0 with multiplicity 4, 2 with
multiplicity 1, −1 with
multiplicity 1

39. with multiplicity 2, 0 with
multiplicity 3
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41. 43. x-intercepts, with multiplicity 2,
with multiplicity 1, intercept As

∞ ∞ ∞ ∞

45. x-intercepts with multiplicity 3,
with multiplicity 2, intercept As

∞ ∞ ∞ ∞

47. x-intercepts with
multiplicity 1, intercept As

∞ ∞ ∞ ∞

49. 51. 53. –4, –2, 1, 3 with multiplicity
1

55. –2, 3 each with multiplicity
2

57. 59.

61. 63. 65.

67. local max
local min

69. global min 71. global min

73. 75. 77.
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79.

5.4 Section Exercises
1. The binomial is a factor of

the polynomial.
3.

5. 7.

9. 11.

13. 15.

17. 19. 21.

23. 25. 27.

29. 31. 33.

35. 37. 39. Yes

41. Yes 43. No 45.

47. 49.

51. 53.

55. 57. 59.

61. 63. 65.

67. 69. 71.

73.

5.5 Section Exercises
1. The theorem can be used to

evaluate a polynomial.
3. Rational zeros can be

expressed as fractions
whereas real zeros include
irrational numbers.

5. Polynomial functions can
have repeated zeros, so the
fact that number is a zero
doesn’t preclude it being a
zero again.

7. 9. 11.
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13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47. 1 positive, 1 negative

49. 3 or 1 positive, 0 negative 51. 0 positive, 3 or 1 negative 53. 2 or 0 positive, 2 or 0
negative

55. 2 or 0 positive, 2 or 0 negative 57. 59.

61. 63. 65.

67. 69. 71. 8 by 4 by 6 inches
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73. 5.5 by 4.5 by 3.5 inches 75. 8 by 5 by 3 inches 77. Radius = 6 meters, Height =
2 meters

79. Radius = 2.5 meters, Height
= 4.5 meters

5.6 Section Exercises
1. The rational function will be

represented by a quotient of
polynomial functions.

3. The numerator and
denominator must have a
common factor.

5. Yes. The numerator of the
formula of the functions
would have only complex
roots and/or factors
common to both the
numerator and
denominator.

7. 9. 11. V.A. at H.A. at
Domain is all reals

13. V.A. at H.A. at
Domain is all reals

15. V.A. at H.A.
at Domain is all reals

17. V.A. at H.A. at
Domain is all reals

19. V.A. at H.A. at

Domain is all reals

21. none 23.

25. Local behavior:

∞ ∞

End behavior: ∞

27. Local behavior:

∞ ∞
End behavior: ∞

29. Local behavior: ∞
∞ ∞ ∞

End behavior: ∞

31.
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33. 35. 37.

39. 41.

43.
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45. 47.

49. 51.

53. 55. 57.

59. 61. 63.
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65.
2.01 2.001 2.0001 1.99 1.999

100 1,000 10,000 –100 –1,000

10 100 1,000 10,000 100,000

.125 .0102 .001 .0001 .00001

Vertical asymptote Horizontal
asymptote

67.
–4.1 –4.01 –4.001 –3.99 –3.999

82 802 8,002 –798 –7998

10 100 1,000 10,000 100,000

1.4286 1.9331 1.992 1.9992 1.999992

Vertical asymptote Horizontal
asymptote

69.
–.9 –.99 –.999 –1.1 –1.01

81 9,801 998,001 121 10,201

10 100 1,000 10,000 100,000

.82645 .9803 .998 .9998

Vertical asymptote Horizontal
asymptote

71. ∞

73. ∞ 75. 77.

79. 81. 83. After about 6.12 hours.

85. 2 by 2
by 5 feet.

87. Radius
= 2.52 meters.

5.7 Section Exercises
1. It can be too difficult or

impossible to solve for in
terms of

3. We will need a restriction on
the domain of the answer.

5.
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7. 9. 11.

13. 15. 17. ∞

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.
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49. 51. 53.

55. 57. , 3.54

seconds

59. 8.92 in.

61. 3.26
ft

63. -2, 3.99 ft 65. ≈ 5.64 ft

5.8 Section Exercises
1. The graph will have the

appearance of a power
function.

3. No. Multiple variables may
jointly vary.

5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.
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43. 45. 47. 1.89 years

49. 0.61 years 51. 3 seconds 53. 48 inches

55. 49.75 pounds 57. 33.33 amperes 59. 2.88 inches

Review Exercises
1. 3.

5. 300 meters by 150 meters,
the longer side parallel to
river.

7. Yes, degree = 5, leading
coefficient = 4

9. Yes, degree = 4, leading
coefficient = 1

11. ∞ ∞ ∞ ∞ 13. –3 with multiplicity 2,
with multiplicity 1, –1 with
multiplicity 3

15. 4 with multiplicity 1 17. with multiplicity 1, 3 with
multiplicity 3

19. with remainder 12

21. 23. , so factored
form is

25.
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27. 29. 0 or 2 positive, 1 negative 31. Intercepts ,
Asymptotes and

33. Intercepts (3, 0), (-3, 0), and
, Asymptotes

35. 37.

39. 41. 43.

45. 47. 148.5 pounds

Practice Test
1. Degree: 5, leading

coefficient: −2
3.

5. 7. 3 with multiplicity 3, with
multiplicity 1, 1 with
multiplicity 2

9. with multiplicity 3, 2
with multiplicity 2

11. 13. 15. 1, −2, and − (multiplicity
2)
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17. 19. 2 or 0 positive, 1 negative 21.

23. 25. 27.

Chapter 6
Try It
6.1 Exponential Functions
1. and

represent
exponential functions.

2. 3. About billion people;
by the year 2031, India’s
population will exceed
China’s by about 0.001
billion, or 1 million people.

4. and 5. 6. Answers

may vary due to round-off
error. The answer should be
very close to

7. 8. about $3,644,675.88 9. $13,693

10. 11. $3,659,823.44 12. 3.77E-26 (This is calculator
notation for the number
written as in
scientific notation. While
the output of an
exponential function is
never zero, this number is
so close to zero that for all
practical purposes we can
accept zero as the answer.)
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6.2 Graphs of Exponential Functions
1. The domain is ∞ ∞ the

range is ∞ the horizontal

asymptote is

2. The domain is ∞ ∞ the

range is ∞ the horizontal

asymptote is

3.

4. The domain is ∞ ∞ the

range is ∞ the horizontal

asymptote is

5. The domain is ∞ ∞ the

range is ∞ the horizontal

asymptote is

6. the

domain is ∞ ∞ the

range is ∞ the

horizontal asymptote is

6.3 Logarithmic Functions
ⓐ is
equivalent to

ⓑ is
equivalent to

1. ⓐ is equivalent to

ⓑ is equivalent
to

ⓒ is equivalent to

2. 3. (recalling

that )

4. 5. 6.

7. The difference in
magnitudes was about

8. It is not possible to take the
logarithm of a negative
number in the set of real
numbers.
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6.4 Graphs of Logarithmic Functions
1. ∞ 2. ∞ 3.

The domain is ∞ the

range is ∞ ∞ and the

vertical asymptote is

4.

The domain is ∞ the

range ∞ ∞ and the

asymptote

5.

The domain is ∞ the

range is ∞ ∞ and the

vertical asymptote is

6.

The domain is ∞ the

range is ∞ ∞ and the

vertical asymptote is

7.

The domain is ∞ the

range is ∞ ∞ and the

vertical asymptote is

8.

The domain is ∞ the

range is ∞ ∞ and the

vertical asymptote is

9.

10. 11.
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6.5 Logarithmic Properties
1. 2.

3. 4. 5.

6. 7.

8. 9. can also be

written by reducing
the fraction to lowest terms.

10. 11. this answer

could also be written

12. The pH increases by about
0.301.

13. 14.

6.6 Exponential and Logarithmic Equations
1. 2. 3.

4. The equation has no
solution.

5. 6. or

7. 8. 9.

10. 11. 12. or

13.

6.7 Exponential and Logarithmic Models

1. 2. less than 230 years, 229.3157
to be exact

3.

4. 6.026 hours 5. 895 cases on day 15 6. Exponential.

7.
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6.8 Fitting Exponential Models to Data
ⓐ The exponential regression
model that fits these data is

ⓑ If spending continues at this
rate, the graduate’s credit card
debt will be $4,499.38 after one
year.

1. ⓐ The logarithmic regression model
that fits these data is

ⓑ If sales continue at this rate, about
171,000 games will be sold in the year
2015.

2.

ⓐ The logistic regression model
that fits these data is

ⓑ If the population continues
to grow at this rate, there will be
about seals in 2020.

ⓒ To the nearest whole
number, the carrying capacity is
25,657.

3.

6.1 Section Exercises
1. Linear functions have a

constant rate of change.
Exponential functions
increase based on a percent
of the original.

3. When interest is
compounded, the
percentage of interest
earned to principal ends up
being greater than the
annual percentage rate for
the investment account.
Thus, the annual percentage
rate does not necessarily
correspond to the real
interest earned, which is the
very definition of nominal.

5. exponential; the population
decreases by a proportional
rate. .

7. not exponential; the charge
decreases by a constant
amount each visit, so the
statement represents a
linear function. .

9. The forest represented by
the function

11. After years, forest A
will have more trees
than forest B.
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13. Answers will vary. Sample
response: For a number of
years, the population of
forest A will increasingly
exceed forest B, but
because forest B actually
grows at a faster rate, the
population will eventually
become larger than forest
A and will remain that way
as long as the population
growth models hold. Some
factors that might
influence the long-term
validity of the exponential
growth model are drought,
an epidemic that culls the
population, and other
environmental and
biological factors.

15. exponential growth; The
growth factor, is
greater than

17. exponential decay; The
decay factor, is
between and

19. 21. 23. Linear

25. Neither 27. Linear 29.

31. 33. 35.

37. 39. continuous growth; the
growth rate is greater than

41. continuous decay; the
growth rate is less than

43. 45. 47.

49. 51. 53.

55.

57.

59. Let be the exponential decay function such
that Then for some number

61. fox

63. 65. 67.
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6.2 Section Exercises
1. An asymptote is a line that

the graph of a function
approaches, as either
increases or decreases
without bound. The
horizontal asymptote of an
exponential function tells us
the limit of the function’s
values as the independent
variable gets either
extremely large or
extremely small.

3. y-intercept:
Domain: all real

numbers; Range: all real
numbers greater than

5.
y-intercept: Domain:
all real numbers; Range: all
real numbers less than

7. y-intercept:
Domain: all real

numbers; Range: all real
numbers greater than

9.

y-intercept:

11.

13. B 15. A 17. E

19. D 21. C 23.

1404
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25. 27.

Horizontal asymptote:
Domain: all real

numbers; Range: all real
numbers strictly greater than

29. As ∞ , ∞ ;

As ∞ ,

31. As ∞ , ;

As ∞ , ∞
33. 35.

37. 39. 41.

43. 45. 47.

49. 51. The graph of
is the refelction about the
y-axis of the graph of

For any real
number and function

the graph of
is the the reflection

about the y-axis,

53. The graphs of and
are the same and are

a horizontal shift to the
right of the graph of
For any real number n, real
number and
function the
graph of is the

horizontal shift

6.3 Section Exercises
1. A logarithm is an exponent.

Specifically, it is the
exponent to which a base
is raised to produce a given
value. In the expressions
given, the base has the
same value. The exponent,

in the expression can
also be written as the
logarithm, and the
value of is the result of
raising to the power of

3. Since the equation of a
logarithm is equivalent to an
exponential equation, the
logarithm can be converted
to the exponential equation

and then properties
of exponents can be applied
to solve for

5. The natural logarithm is a
special case of the logarithm
with base in that the
natural log always has base

Rather than notating the
natural logarithm as

the notation used
is

7. 9. 11.

13. 15. 17.
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19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59. No, the function has no
defined value for To
verify, suppose is in
the domain of the function

Then there
is some number such
that Rewriting
as an exponential equation
gives: which is
impossible since no such
real number exists.
Therefore, is not the
domain of the function

61. Yes. Suppose there exists a
real number such that

Rewriting as an
exponential equation gives

which is a real
number. To verify, let

Then, by definition,

63. No; so

is undefined.

65.

6.4 Section Exercises
1. Since the functions are

inverses, their graphs are
mirror images about the line

So for every point
on the graph of a

logarithmic function, there
is a corresponding point

on the graph of its
inverse exponential
function.

3. Shifting the function right or
left and reflecting the
function about the y-axis will
affect its domain.

5. No. A horizontal asymptote
would suggest a limit on the
range, and the range of any
logarithmic function in
general form is all real
numbers.
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7. Domain: ∞ Range:

∞ ∞

9. Domain: ∞ Range:

∞ ∞

11. Domain: ∞ Vertical

asymptote:

13. Domain: ∞
Vertical asymptote:

15. Domain: ∞ Vertical

asymptote:

17. Domain: ∞ ;

Vertical asymptote: ;
End behavior: as

∞
and as ∞ ∞

19. Domain: ∞ ; Vertical

asymptote: ;
End behavior: as

, ∞ and as

∞ , ∞

21. Domain: ∞ Range:

∞ ∞ Vertical

asymptote:
x-intercept:
y-intercept: DNE

23. Domain: ∞ Range:

∞ ∞ Vertical

asymptote:
x-intercept:
y-intercept: DNE

25. Domain: ∞ Range:

∞ ∞ Vertical

asymptote:
x-intercept:
y-intercept: DNE

27. B 29. C

31. B 33. C 35.

37. 39. C 41.
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43. 45. 47.

49. 51. 53.

55. 57. The graphs of
and

appear to
be the same; Conjecture:
for any positive base

59. Recall that the argument of a
logarithmic function must be
positive, so we determine
where . From the
graph of the function

note that the
graph lies above the x-axis on

the interval ∞ and

again to the right of the vertical

asymptote, that is ∞
Therefore, the domain is

∞ ∞

6.5 Section Exercises
1. Any root expression can be

rewritten as an expression
with a rational exponent so
that the power rule can be
applied, making the
logarithm easier to
calculate. Thus,

3. 5.

7. 9. 11.

1408

Access for free at openstax.org



13. 15. 17.

19. 21. 23.

25. 27.

29. 31.

33. 35. 37.

39. By the quotient rule:

Rewriting as an exponential equation and
solving for

Checking, we find that

is defined, so

41. Let and be positive
integers greater than
Then, by the change-of-
base formula,

6.6 Section Exercises
1. Determine first if the

equation can be rewritten so
that each side uses the
same base. If so, the
exponents can be set equal
to each other. If the
equation cannot be
rewritten so that each side
uses the same base, then
apply the logarithm to each
side and use properties of
logarithms to solve.

3. The one-to-one property can
be used if both sides of the
equation can be rewritten as
a single logarithm with the
same base. If so, the
arguments can be set equal
to each other, and the
resulting equation can be
solved algebraically. The
one-to-one property cannot
be used when each side of
the equation cannot be
rewritten as a single
logarithm with the same
base.

5.

7. 9. 11.
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13. No solution 15. 17.

19. 21. 23.

25. no solution 27. 29.

31. 33. 35.

37. 39. No solution 41. No solution

43. 45. 47.

49. 51. 53.

55. 57. 59. No solution

1410
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61. 63. 65. about

67. about 5 years 69. 71.

73. 75. 77. about

79. 81.

6.7 Section Exercises
1. Half-life is a measure of

decay and is thus associated
with exponential decay
models. The half-life of a
substance or quantity is the
amount of time it takes for
half of the initial amount of
that substance or quantity
to decay.

3. Doubling time is a measure
of growth and is thus
associated with exponential
growth models. The
doubling time of a
substance or quantity is the
amount of time it takes for
the initial amount of that
substance or quantity to
double in size.

5. An order of magnitude is the
nearest power of ten by
which a quantity
exponentially grows. It is
also an approximate
position on a logarithmic
scale; Sample response:
Orders of magnitude are
useful when making
comparisons between
numbers that differ by a
great amount. For example,
the mass of Saturn is 95
times greater than the mass
of Earth. This is the same as
saying that the mass of
Saturn is about times, or
2 orders of magnitude
greater, than the mass of
Earth.
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7. The amount
initially present is about 16.7
units.

9. 150 11. exponential;

13. logarithmic 15. logarithmic 17.

19. about years 21. about years 23. half-lives; minutes

25. 27. Let for some non-
negative real number
such that Then,

29.
mg

31. about days 33.
half-life: about minutes

35. So the hourly
decay rate is about

37.
after 3 hours:

39.
doubling time: about
minutes

41. about minutes

43.
where is in minutes.

45. about minutes 47.

49. MMS magnitude: 51. 53. C

1412

Access for free at openstax.org



6.8 Section Exercises
1. Logistic models are best

used for situations that have
limited values. For example,
populations cannot grow
indefinitely since resources
such as food, water, and
space are limited, so a
logistic model best
describes populations.

3. Regression analysis is the
process of finding an
equation that best fits a
given set of data points. To
perform a regression
analysis on a graphing
utility, first list the given
points using the STAT then
EDIT menu. Next graph the
scatter plot using the STAT
PLOT feature. The shape of
the data points on the
scatter graph can help
determine which regression
feature to use. Once this is
determined, select the
appropriate regression
analysis command from the
STAT then CALC menu.

5. The y-intercept on the graph
of a logistic equation
corresponds to the initial
population for the
population model.

7. C 9. B 11. ; 175

13. 15. y-intercept: 17. koi

19. about months. 21. 23. About 38 wolves

25. About 8.7 years 27. 29.
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31. 33. 35. When

37. 39. 41.

43. When 45. When 47.

49. About 25 51. 53.

55. When 57.
; ; the
regression curves are
symmetrical about , so
it appears that they are
inverse functions.

59.

Review Exercises
1. exponential decay; The

growth factor, is
between and

3. 5.
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7. continuous decay; the
growth rate is negative.

9. domain: all real numbers;
range: all real numbers strictly
greater than zero; y-intercept:
(0, 3.5);

11.
y-intercept:
Domain: all real numbers;
Range: all real numbers
greater than

13. 15. 17.

19. 21. 23.

25. Domain: Vertical
asymptote: End
behavior: as

∞ and

as ∞ ∞

27. 29.

31. 33. 35.

37. 39. 41. no solution

43. no solution 45. 47.

49. 51. about years 53.

55.

  
57. about minutes 59. about days
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61. exponential 63. 65. about days

67. logarithmic;

Practice Test
1. About 13 dolphins. 3. 5. y-intercept:
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7. 9. 11.

13. Domain: Vertical
asymptote: End
behavior:

∞ and

∞ ∞

15. 17.

19. 21. 23. no solution

25. 27. 29. half-
life: about days

31. 33. logarithmic

1417



35. exponential; 37. logistic;

Chapter 7
Try It
7.1 Angles
1. 2. 3.

4. 5. 6.

7. 8. 9. 1.88

10. rad/s 11. 1655 kilometers per hour
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7.2 Right Triangle Trigonometry

1. 2.

3. 4. 2

5.
missing angle is

6. About 52 ft

7.3 Unit Circle

1. 2. 3.

4. approximately 0.866025403 5. ⓐ

ⓑ

6.

7.

7.4 The Other Trigonometric Functions

1.

2.

3. 4.

5. 6. 7.

8. 9.

10.
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7.1 Section Exercises
1. 3. Whether the angle is

positive or negative
determines the direction. A
positive angle is drawn in
the counterclockwise
direction, and a negative
angle is drawn in the
clockwise direction.

5. Linear speed is a
measurement found by
calculating distance of an
arc compared to time.
Angular speed is a
measurement found by
calculating the angle of an
arc compared to time.

7. 9. 11.

13. 15. 17.

19. 21. 23.
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25. 27. 29.

31. 33. radians 35. radians

37. radians 39. radians 41. miles

43. centimeters 45. meters 47. 104.7198 cm2

49. 0.7697 in2 51. 53.

55. 57. 59. rad/min RPM

61. in./s, 4.77 RPM ,
deg/s

63. 65. miles

67. 69. 794 miles per hour 71. 2,234 miles per hour

73. 11.5 inches

7.2 Section Exercises
1. 3. The tangent of an angle is

the ratio of the opposite
side to the adjacent side.

5. For example, the sine of an
angle is equal to the cosine
of its complement; the
cosine of an angle is equal
to the sine of its
complement.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 188.3159 45. 200.6737 47. 498.3471 ft
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49. 1060.09 ft 51. 27.372 ft 53. 22.6506 ft

55. 368.7633 ft

7.3 Section Exercises
1. The unit circle is a circle of

radius 1 centered at the
origin.

3. Coterminal angles are
angles that share the same
terminal side. A reference
angle is the size of the
smallest acute angle,
formed by the terminal side
of the angle and the
horizontal axis.

5. The sine values are equal.

7. I 9. IV 11.

13. 15. 17. 0

19. -1 21. 23.

25. 27. 29.

31. 33. 35. Quadrant IV,

,

37. Quadrant II,

,

39. Quadrant II,

,

41. Quadrant II,

,

43. Quadrant III,

,

45. Quadrant II,

,

47. Quadrant II,

,

49. Quadrant IV, 51. 53.

55. 57. 59.

61. 63. 65.

1422

Access for free at openstax.org



67. 69. 71.

73. 75. 77.

79. 81. −0.1736 83. 0.9511

85. −0.7071 87. −0.1392 89. −0.7660

91. 93. 95.

97. 99. 0 101.

103. 37.5 seconds, 97.5
seconds, 157.5 seconds,
217.5 seconds, 277.5
seconds, 337.5 seconds

7.4 Section Exercises
1. Yes, when the reference

angle is and the terminal
side of the angle is in
quadrants I and III. Thus, a

the sine and
cosine values are equal.

3. Substitute the sine of the
angle in for in the
Pythagorean Theorem

Solve for and
take the negative solution.

5. The outputs of tangent and
cotangent will repeat every

units.

7. 9. 11.

13. 1 15. 2 17.

19. 21. 23.

25. –1 27. -2 29.

31. 2 33. 35. –2

37. –1 39. , ,

,

,

41.
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43. 45. 3.1 47. 1.4

49. , ,
, ,

,

51. ,

,

, ,

53. –0.228

55. –2.414 57. 1.414 59. 1.540

61. 1.556 63. 65.

67. even 69. even 71.

73. 13.77 hours, period: 75. 3.46 inches

Review Exercises
1. 3. 5. 10.385 meters

7. 9. 11.

13. 15. 1036.73 miles per hour 17.

19. 21. 23.

25. 27. 29. 369.2136 ft
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31. 33. 35.

37. all real numbers 39. 41.

43. 2 45. –2.5 47.

49. cosine, secant

Practice Test
1. 3. 6.283 centimeters 5.

7. 9. 3.351 feet per second,
radians per second

11.

13. 15. real numbers 17. 1

19. 21. –0.68 23.

Chapter 8
Try It
8.1 Graphs of the Sine and Cosine Functions
1. 2. compressed 3. right

4. 2 units up 5. midline: amplitude:
period:

phase shift:

6.
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7. two possibilities:
or

8.

midline: amplitude:
period:

phase shift: or none

9.

midline: amplitude:
period:

phase shift:

10. 7 11.

8.2 Graphs of the Other Trigonometric Functions
1. 2. It would be reflected across

the line becoming
an increasing function.

3.
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4. This is a vertical reflection of
the preceding graph because
is negative.

5. 6.

7.

8.3 Inverse Trigonometric Functions
1. ⓐ ⓑ ⓒ

ⓓ
2. 3. 1.9823 or 113.578°

4.
radians

5. 6.

7. 8. 9.

8.1 Section Exercises
1. The sine and cosine

functions have the property
that for a
certain This means that
the function values repeat
for every units on the
x-axis.

3. The absolute value of the
constant (amplitude)
increases the total range
and the constant (vertical
shift) shifts the graph
vertically.

5. At the point where the
terminal side of intersects
the unit circle, you can
determine that the
equals the y-coordinate of
the point.
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7.

amplitude: period:
midline: maximum:

occurs at

minimum: occurs at
for one period, the

graph starts at 0 and ends at

9.

amplitude: 4; period:
midline: maximum
occurs at minimum:

occurs at one
full period occurs from to

11.

amplitude: 1; period:
midline: maximum:

occurs at
minimum: occurs at

one full period is
graphed from to

13.

amplitude: 4; period: 2; midline:
maximum: occurs

at minimum:
occurs at

15.

amplitude: 3; period:
midline: maximum:

occurs at
minimum: occurs at

horizontal shift:
vertical translation 5; one
period occurs from to

17.

amplitude: 5; period:
midline: maximum:

occurs at
minimum: occurs at

phase shift:
vertical translation: one full
period can be graphed on

to
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19.

amplitude: 1 ; period:
midline: maximum:

occurs at
maximum: occurs at

minimum:
occurs at phase shift:

vertical translation: 1; one
full period is from to

21.

amplitude: 1; period:
midline: maximum:

occurs at
minimum: occurs at

phase shift:
vertical shift: 0

23. amplitude: 2; midline:
period: 4;

equation:

25. amplitude: 2; period: 5;
midline: equation:

27. amplitude: 4; period: 2;
midline: equation:

29. amplitude: 2; period: 2;
midline equation:

31. 33. 35.

37. is symmetric 39. 41. Maximum: at ;
minimum: at

43. A linear function is added to a
periodic sine function. The
graph does not have an
amplitude because as the linear
function increases without
bound the combined function

will increase
without bound as well. The
graph is bounded between the
graphs of and

because sine
oscillates between −1 and 1.

45. There is no amplitude because
the function is not bounded.

47. The graph is symmetric with
respect to the y-axis and there
is no amplitude because the
function’s bounds decrease as

grows. There appears to be
a horizontal asymptote at
.
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8.2 Section Exercises
1. Since is the

reciprocal function of
you can plot the

reciprocal of the coordinates
on the graph of to
obtain the y-coordinates of

The x-intercepts
of the graph are
the vertical asymptotes for
the graph of

3. Answers will vary. Using the
unit circle, one can show
that

5. The period is the same:

7. IV 9. III 11. period: 8; horizontal shift: 1
unit to left

13. 1.5 15. 5 17.

19.

stretching factor: 2; period:
asymptotes:

21.

stretching factor: 6; period: 6;
asymptotes:

23.

stretching factor: 1; period:
asymptotes:

25.

Stretching factor: 1; period:
asymptotes:

27.

stretching factor: 2; period:
asymptotes:
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29.

stretching factor: 4; period:
asymptotes:

31.

stretching factor: 7; period:
asymptotes:

33.

stretching factor: 2; period:
asymptotes:

35.

stretching factor: period:
asymptotes:

37. 39. 41.
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43. 45. 47.

49. 51. 53.

ⓐ
ⓑ

ⓒ and the
distance grows without bound
as approaches —i.e., at
right angles to the line
representing due north, the
boat would be so far away,
the fisherman could not see it;

ⓓ 3; when the boat
is 3 km away;

ⓔ 1.73; when the
boat is about 1.73 km away;

ⓕ 1.5 km; when

55. ⓐ
ⓑ

ⓒ after 0 seconds,
the rocket is 0 mi above the
ground; after 30
seconds, the rockets is 2 mi
high;

ⓓ As approaches 60
seconds, the values of
grow increasingly large. The
distance to the rocket is
growing so large that the
camera can no longer track it.

57.
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8.3 Section Exercises
1. The function is

one-to-one on
thus, this interval is the
range of the inverse
function of

The function
is one-to-one on

thus, this interval is
the range of the inverse
function of

3. is the radian measure of
an angle between and

whose sine is 0.5.

5. In order for any function to
have an inverse, the
function must be one-to-one
and must pass the
horizontal line test. The
regular sine function is not
one-to-one unless its
domain is restricted in some
way. Mathematicians have
agreed to restrict the sine
function to the interval

so that it is one-to-
one and possesses an
inverse.

7. True . The angle, that
equals , ,
will be a second quadrant
angle with reference angle,

, where equals
, . Since is

the reference angle for ,
and

= -

9. 11.

13. 15. 17. 1.98

19. 0.93 21. 1.41 23. 0.56 radians

25. 0 27. 0.71 29. -0.71

31. 33. 0.8 35.

37. 39. 41.

43. 45. 47.

49.

domain range

51. approximately 53. 0.395 radians
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55. 1.11 radians 57. 1.25 radians 59. 0.405 radians

61. No. The angle the ladder
makes with the horizontal
is 60 degrees.

Review Exercises
1. amplitude: 3; period:

midline: no asymptotes
3. amplitude: 3; period:

midline: no asymptotes
5. amplitude: 3; period:

midline: no asymptotes

7. amplitude: 6; period:
midline: no asymptotes

9. stretching factor: none; period:
midline: asymptotes:

where is an
integer

11. stretching factor: 3; period:
midline: asymptotes:

where is an
integer
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13. amplitude: none; period: no
phase shift; asymptotes:

where is an odd
integer

15. amplitude: none; period:
no phase shift; asymptotes:

where is an integer

17. amplitude: none; period: no
phase shift; asymptotes:

where is an integer

19. largest: 20,000; smallest:
4,000

21. amplitude: 8,000; period:
10; phase shift: 0

23. In 2007, the predicted
population is 4,413. In
2010, the population will be
11,924.

25. 5 in. 27. 10 seconds 29.

31. 33. 35. No solution

37. 39. The graphs are not symmetrical
with respect to the line
They are symmetrical with
respect to the -axis.

41. The graphs appear to be
identical.
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Practice Test
1. amplitude: 0.5; period:

midline
3. amplitude: 5; period:

midline:
5. amplitude: 1; period:

midline:

7. amplitude: 3; period:
midline:

9. amplitude: none; period:
midline: asymptotes:

where is an
integer

11. amplitude: none; period:
midline: asymptotes:

where is an integer

13. amplitude: none; period:
midline:

15. amplitude: 2; period: 2;
midline:

17. amplitude: 1; period: 12;
phase shift: midline

19. 21. period: horizontal shift: 23. period: 2;
phase shift: 0
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25. 27. The views are different because
the period of the wave is
Over a bigger domain, there
will be more cycles of the
graph.

29.

31. On the approximate intervals 33.

35. This graph is periodic with a
period of

37. 39.

41. 43. 45.

47. False 49. approximately 0.07 radians
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Chapter 9
Try It
9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to
Simplify Trigonometric Expressions

1. 2.

3. 4. This is a difference of squares formula:

5.

9.2 Sum and Difference Identities

1. 2. 3.

4. 5.

9.3 Double-Angle, Half-Angle, and Reduction Formulas
1. 2.

3.

4.
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5.

9.4 Sum-to-Product and Product-to-Sum Formulas

1. 2. 3.

4. 5.

9.5 Solving Trigonometric Equations
1. 2. 3. and

4. 5.

9.1 Section Exercises
1. All three functions, , , and , are even.

This is because
,

and

3. When then
which is undefined.

5. 7.

9. 11. 13.

15. 17. 19.

21. 23. 25.

27. 29. Answers will vary. Sample proof:

31. Answers will vary. Sample proof:

33. Answers will vary. Sample proof:
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35. False 37. False 39. Proved with negative and
Pythagorean identities

41. True

9.2 Section Exercises

1. The cofunction identities
apply to complementary
angles. Viewing the two
acute angles of a right
triangle, if one of those
angles measures the
second angle measures

Then
The

same holds for the other
cofunction identities. The
key is that the angles are
complementary.

3. so is
odd.

so is even.

5.

7. 9. 11.

13. 15. 17.

19. 21.

23. 25. 27.
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29. 31. 33. They are the same.

35. They are the different, try 37. They are the same. 39. They are the different, try

41. They are different, try 43. 45. or 0.9659

47. 49.

51. 53. True

55. True. Note that

   
and expand the right hand
side.

9.3 Section Exercises

1. Use the Pythagorean
identities and isolate the
squared term.

3.
multiplying the top and
bottom by and

respectively.

5. a) b) c)

7. a) b) c)

9.

11. 13. 15.
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17. 19. 21. a) b) c)

23. a) b) c) 25. 27.

29. 31. 33.

35. 37.

39. 41. 43.

45. 47. 49.

51. 53.

55. 57.

59. 61.

63.

9.4 Section Exercises
1. Substitute     into cosine

and     into sine and

evaluate.

3. Answers will vary. There are
some equations that involve
a sum of two trig
expressions where when
converted to a product are
easier to solve. For example:

  When

converting the numerator to
a product the equation
becomes:

5.
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7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31.

33.

35.

37. 39.

41. 43. 45. It is an identity.

47. It is not an identity, but
is.

49. 51.

53. 55. Start with Make a substitution and let and let
so becomes

Since and we can solve for and in terms of x and y
and substitute in for and get

57. 59.

61. 63.
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9.5 Section Exercises
1. There will not always be

solutions to trigonometric
function equations. For a
basic example,

3. If the sine or cosine function
has a coefficient of one,
isolate the term on one side
of the equals sign. If the
number it is set equal to has
an absolute value less than
or equal to one, the
equation has solutions,
otherwise it does not. If the
sine or cosine does not have
a coefficient equal to one,
still isolate the term but
then divide both sides of the
equation by the leading
coefficient. Then, if the
number it is set equal to has
an absolute value greater
than one, the equation has
no solution.

5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. ,

,

,

,

,

35. 37. 39.

41. 43. There are no solutions. 45. ,

47. ,

,

,

49. There are no solutions. 51. There are no solutions.
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53. 55. 57.

59. 61. , ,

,

63. , ,

,

65. 67. , ,

,

69. There are no solutions.

71. ,
,
,

73. 75.

77. 79. 81.

83. 85. 87. There are no solutions.

89. 91. There are no solutions. 93.

95. 97. 99.

101. 103. 105.

Review Exercises

1. ,

,

,

3. 5.

7. 9. Yes 11.

13.
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15.

17. 19. 21.

23. 25. 27.

29. 31. 33.

35. 37. 39.

41. 43. 45. No solution

47. 49.

Practice Test

1. 1 3. 5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27.
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29. 31. Amplitude: , period: ,
frequency: 60 Hz

33. Amplitude: 8, fast period:
, fast frequency: 500

Hz, slow period: , slow
frequency: 10 Hz

35.
, 31 second

Chapter 10
Try It
10.1 Non-right Triangles: Law of Sines

1. 2. Solution 1

Solution 2

3.

4. two 5. about square feet 6. 161.9 yd.

10.2 Non-right Triangles: Law of Cosines
1. 2. 3. Area = 552 square feet

4. about 8.15 square feet

10.3 Polar Coordinates

1. 2. 3.
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4. 5. or, in the
standard form for a circle,

10.4 Polar Coordinates: Graphs
1. The equation fails the

symmetry test with respect
to the line and with
respect to the pole. It passes
the polar axis symmetry
test.

2. Tests will reveal symmetry
about the polar axis. The
zero is and the
maximum value is

3.

4. The graph is a rose curve,
even

5.

Rose curve, odd

6.

10.5 Polar Form of Complex Numbers
1. 2. 13 3.

4. 5. 6.

7. 8.
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10.6 Parametric Equations

1. 2. 3.

4. 5. 6.

10.7 Parametric Equations: Graphs
1. 2. 3. The graph of the parametric

equations is in red and the
graph of the rectangular
equation is drawn in blue dots
on top of the parametric
equations.

10.8 Vectors
1. 2. 3.
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4.

Magnitude =

10.1 Section Exercises
1. The altitude extends from

any vertex to the opposite
side or to the line containing
the opposite side at a 90°
angle.

3. When the known values are
the side opposite the
missing angle and another
side and its opposite angle.

5. A triangle with two given
sides and a non-included
angle.

7. 9. 11.

13. 15. one triangle, 17. two triangles,
or

19. two triangles,
or

21. two triangles,

or

23. no triangle possible

25. or 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59. 51.4 feet

61. The distance from the
satellite to station is
approximately 1716 miles.
The satellite is
approximately 1706 miles
above the ground.

63. 2.6 ft 65. 5.6 km

67. 371 ft 69. 5936 ft 71. 24.1 ft

73. 19,056 ft2 75. 445,624 square miles 77. 8.65 ft2
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10.2 Section Exercises
1. two sides and the angle

opposite the missing side.
3. is the semi-perimeter,

which is half the perimeter
of the triangle.

5. The Law of Cosines must be
used for any oblique (non-
right) triangle.

7. 11.3 9. 34.7 11. 26.7

13. 257.4 15. not possible 17. 95.5°

19. 26.9° 21. 23.

25. 27. 177.56 in2 29. 0.04 m2

31. 0.91 yd2 33. 3.0 35. 29.1

37. 0.5 39. 70.7° 41. 77.4°

43. 25.0 45. 9.3 47. 43.52

49. 1.41 51. 0.14 53. 18.3

55. 48.98 57. 59. 7.62

61. 85.1 63. 24.0 km 65. 99.9 ft

67. 37.3 miles 69. 2371 miles 71.

73. 292.4 miles 75. 65.4 cm2 77. 468 ft2
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10.3 Section Exercises
1. For polar coordinates, the

point in the plane depends
on the angle from the
positive x-axis and distance
from the origin, while in
Cartesian coordinates, the
point represents the
horizontal and vertical
distances from the origin.
For each point in the
coordinate plane, there is
one representation, but for
each point in the polar
plane, there are infinite
representations.

3. Determine for the point,
then move units from the
pole to plot the point. If is
negative, move units from
the pole in the opposite
direction but along the
same angle. The point is a
distance of away from the
origin at an angle of from
the polar axis.

5. The point has a
positive angle but a negative
radius and is plotted by
moving to an angle of
and then moving 3 units in
the negative direction. This
places the point 3 units
down the negative y-axis.
The point has a
negative angle and a
positive radius and is plotted
by first moving to an angle
of and then moving 3
units down, which is the
positive direction for a
negative angle. The point is
also 3 units down the
negative y-axis.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29. or

circle

31. line 33. line 35. hyperbola

37. circle 39. line 41.

43. 45. 47.
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49. 51. 53.

55. 57. 59.

61. 63. 65.

67. 69. 71.

73. 75. A vertical line with units
left of the y-axis.

77. A horizontal line with
units below the x-axis.

79. 81. 83.
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10.4 Section Exercises
1. Symmetry with respect to

the polar axis is similar to
symmetry about the -axis,
symmetry with respect to
the pole is similar to
symmetry about the origin,
and symmetric with respect
to the line is similar
to symmetry about the

-axis.

3. Test for symmetry; find
zeros, intercepts, and
maxima; make a table of
values. Decide the general
type of graph, cardioid,
limaçon, lemniscate, etc.,
then plot points at

and and
sketch the graph.

5. The shape of the polar
graph is determined by
whether or not it includes a
sine, a cosine, and constants
in the equation.

7. symmetric with respect to
the polar axis

9. symmetric with respect to
the polar axis, symmetric
with respect to the line

symmetric with
respect to the pole

11. no symmetry

13. no symmetry 15. symmetric with respect to
the pole

17. circle

19. cardioid 21. cardioid 23. one-loop/dimpled limaçon

25. one-loop/dimpled limaçon 27. inner loop/two-loop limaçon 29. inner loop/two-loop limaçon
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31. inner loop/two-loop limaçon 33. lemniscate 35. lemniscate

37. rose curve 39. rose curve 41. Archimedes’ spiral

43. Archimedes’ spiral 45. 47.

49. 51. 53.

55. They are both spirals, but
not quite the same.

57. Both graphs are curves
with 2 loops. The equation
with a coefficient of has
two loops on the left, the
equation with a coefficient
of 2 has two loops side by
side. Graph these from 0 to

to get a better picture.

59. When the width of the
domain is increased, more
petals of the flower are
visible.

61. The graphs are three-petal,
rose curves. The larger the
coefficient, the greater the
curve’s distance from the
pole.

63. The graphs are spirals. The
smaller the coefficient, the
tighter the spiral.

65.
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67. 69. 71.

and at since
is squared

10.5 Section Exercises
1. a is the real part, b is the

imaginary part, and
3. Polar form converts the real

and imaginary part of the
complex number in polar
form using and

5.
It is used to simplify polar
form when a number has
been raised to a power.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45.

47. 49. 51.
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53. 55. 57.

59. 61.

10.6 Section Exercises
1. A pair of functions that is

dependent on an external
factor. The two functions are
written in terms of the same
parameter. For example,

and

3. Choose one equation to
solve for substitute into
the other equation and
simplify.

5. Some equations cannot be
written as functions, like a
circle. However, when
written as two parametric
equations, separately the
equations are functions.

7. 9. 11. or

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35. Ellipse

37. Circle 39. 41.

43. yes, at 45.

1 -3 1

2 0 7

3 5 17

47. answers may vary:

1457



49. answers may vary: ,

10.7 Section Exercises
1. plotting points with the

orientation arrow and a
graphing calculator

3. The arrows show the
orientation, the direction of
motion according to
increasing values of

5. The parametric equations
show the different vertical
and horizontal motions over
time.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.
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31. 33. 35.

37. 39. There will be 100 back-and-
forth motions.

41. Take the opposite of the
equation.

43. The parabola opens up. 45. 47.
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49. 51. 53.

55. 57. 59.

61. The -intercept changes. 63. 65.
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67. approximately 3.2 seconds 69. 1.6 seconds 71.

73.

10.8 Section Exercises
1. lowercase, bold letter,

usually
3. They are unit vectors. They

are used to represent the
horizontal and vertical
components of a vector.
They each have a magnitude
of 1.

5. The first number always
represents the coefficient of
the and the second
represents the

7. 9. not equal 11. equal

13. equal 15. 17.

19. 21.

23. 25. 27.

29. 31. 33.

35. 37. 39.
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41. 43. 45.

47. 49. 51.

53. ⓐ 58.7 ⓑ 12.555. 57. pounds,
pounds

59. pounds,
pounds

61. 4.635 miles, 17.764° N of E 63. 17 miles. 10.318 miles

65. Distance: 2.868. Direction:
86.474° North of West, or
3.526° West of North

67. 4.924°. 659 km/hr 69. 4.424°

71. 73. 21.801°, relative to the car’s
forward direction

75. parallel: 16.28,
perpendicular: 47.28
pounds

77. 19.35 pounds, 231.54° from
the horizontal

79. 5.1583 pounds, 75.8° from
the horizontal

Review Exercises
1. Not possible 3. 5. distance of the plane from

point 2.2 km, elevation
of the plane: 1.6 km
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7. 9. 40.6 km 11.

13. 15. 17.

19. 21. 23. symmetric with respect to
the line

25. 27. 29. 5

31. 33. 35.

37. 39. 41.

43. 45. 47.
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49. 51. a.

b. The ball is 14 feet high and 184 feet
from where it was launched.

c. 3.3 seconds

53. not equal 55. 4i 57. i j

59. Magnitude:
Direction:

61. 63.

Practice Test
1. 3. 5.

7. 9. 11.

13. 15. 17.
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19. 21. 23. −4i − 15j

25.

Chapter 11
Try It
11.1 Systems of Linear Equations: Two Variables
1. Not a solution. 2. The solution to the system is

the ordered pair
3.

4. 5. 6. No solution. It is an
inconsistent system.

7. The system is dependent so
there are infinite solutions
of the form

8. 700 children, 950 adults

11.2 Systems of Linear Equations: Three Variables
1. 2. No solution. 3. Infinite number of solutions

of the form

11.3 Systems of Nonlinear Equations and Inequalities: Two Variables
1. and 2. 3.
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4.

11.4 Partial Fractions
1. 2. 3.

4.

11.5 Matrices and Matrix Operations

1. 2.

11.6 Solving Systems with Gaussian Elimination

1. 2. 3.

4. 5. 6. $150,000 at 7%, $750,000 at
8%, $600,000 at 10%

11.7 Solving Systems with Inverses

1.
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2. 3. 4.

11.8 Solving Systems with Cramer's Rule
1. 2. 3.

11.1 Section Exercises
1. No, you can either have

zero, one, or infinitely many.
Examine graphs.

3. This means there is no
realistic break-even point.
By the time the company
produces one unit they are
already making profit.

5. You can solve by
substitution (isolating or
), graphically, or by addition.

7. Yes 9. Yes 11.

13. 15. 17. No solutions exist.

19. 21. 23.

25. No solutions exist. 27. 29.

31. 33. 35.

37. 39. 41. Consistent with one
solution

43. Consistent with one
solution

45. Dependent with infinitely
many solutions

47.

49. 51. 53.

55. 57. They never turn a profit. 59.

61. The numbers are 7.5 and
20.5.

63. 24,000 65. 790 second-year students,
805 first-year students

67. 56 men, 74 women 69. 10 gallons of 10% solution,
15 gallons of 60% solution

71. Swan Peak: $750,000,
Riverside: $350,000

73. $12,500 in the first account,
$10,500 in the second
account.

75. High-tops: 45, Low-tops: 15 77. Infinitely many solutions.
We need more information.
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11.2 Section Exercises
1. No, there can be only one,

zero, or infinitely many
solutions.

3. Not necessarily. There could
be zero, one, or infinitely
many solutions. For
example, is not a
solution to the system
below, but that does not
mean that it has no solution.

5. Every system of equations
can be solved graphically, by
substitution, and by
addition. However, systems
of three equations become
very complex to solve
graphically so other
methods are usually
preferable.

7. No 9. Yes 11.

13. 15. 17.

19. 21. 23. No solutions exist

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 24, 36, 48 53. 70 grandparents, 140
parents, 190 children

55. Your share was $19.95,
Shani’s share was $40, and
your other roommate’s
share was $22.05.

57. There are infinitely many
solutions; we need more
information

59. 500 students, 225 children,
and 450 adults

61. The BMW was $49,636, the
Jeep was $42,636, and the
Toyota was $47,727.

63. $400,000 in the account
that pays 3% interest,
$500,000 in the account
that pays 4% interest, and
$100,000 in the account
that pays 2% interest.

65. The United States
consumed 26.3%, Japan
7.1%, and China 6.4% of the
world’s oil.

67. Saudi Arabia imported
16.8%, Canada imported
15.1%, and Mexico 15.0%

69. Birds were 19.3%, fish were
18.6%, and mammals were
17.1% of endangered
species
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11.3 Section Exercises
1. A nonlinear system could be

representative of two circles
that overlap and intersect in
two locations, hence two
solutions. A nonlinear
system could be
representative of a parabola
and a circle, where the
vertex of the parabola
meets the circle and the
branches also intersect the
circle, hence three solutions.

3. No. There does not need to
be a feasible region.
Consider a system that is
bounded by two parallel
lines. One inequality
represents the region above
the upper line; the other
represents the region below
the lower line. In this case,
no points in the plane are
located in both regions;
hence there is no feasible
region.

5. Choose any number
between each solution and
plug into and If

then there is
profit.

7. 9. 11.

13. 15. 17.

19. 21.

23. 25. 27. No Solutions Exist

29. No Solutions Exist 31.

33. 35.

37. 39.

41. 43. 45.
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47.

49.

51. No Solution Exists 53. and 55. 12, 288

57. 2–20 computers

11.4 Section Exercises
1. No, a quotient of

polynomials can only be
decomposed if the
denominator can be
factored. For example,

cannot be decomposed
because the denominator
cannot be factored.

3. Graph both sides and
ensure they are equal.

5. If we choose then
the B-term disappears,
letting us immediately know
that We could
alternatively plug in

, giving us a B-value
of

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.
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11.5 Section Exercises
1. No, they must have the

same dimensions. An
example would include two
matrices of different
dimensions. One cannot add
the following two matrices
because the first is a
matrix and the second is a

matrix.

has no

sum.

3. Yes, if the dimensions of
are and the
dimensions of are
both products will be
defined.

5. Not necessarily. To find
we multiply the first row of

by the first column of to
get the first entry of To
find we multiply the
first row of by the first
column of to get the first
entry of Thus, if those
are unequal, then the matrix
multiplication does not
commute.

7. 9. 11. Undidentified; dimensions
do not match

13. 15. 17.

19. 21. 23.

25. Undefined; dimensions do
not match.

27. 29.

31. 33. Undefined; inner
dimensions do not match.

35.

37. 39. 41.

43. 45. 47.

49. 51. 53.
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55. 57. 59.

 

 

11.6 Section Exercises
1. Yes. For each row, the

coefficients of the variables
are written across the
corresponding row, and a
vertical bar is placed; then
the constants are placed to
the right of the vertical bar.

3. No, there are numerous
correct methods of using
row operations on a matrix.
Two possible ways are the
following: (1) Interchange
rows 1 and 2. Then

(2)
Then divide

row 1 by 9.

5. No. A matrix with 0 entries
for an entire row would have
either zero or infinitely
many solutions.

7. 9. 11.

13. 15. 17. No solutions

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. No solutions exist. 53. 860 red velvet, 1,340
chocolate

55. 4% for account 1, 6% for
account 2

57. $126 59. Banana was 3%, pumpkin
was 7%, and rocky road
was 2%

61. 100 almonds, 200 cashews,
600 pistachios
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11.7 Section Exercises

1. If is the inverse of
then the identity
matrix. Since is also the
inverse of
You can also check by
proving this for a
matrix.

3. No, because and are
both 0, so
which requires us to divide
by 0 in the formula.

5. Yes. Consider the matrix The

inverse is found with the following
calculation:

7. 9. 11.

13. 15. 17. There is no inverse

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53. Infinite solutions.

55. 50% oranges, 25%
bananas, 20% apples

57. 10 straw hats, 50 beanies,
40 cowboy hats

59. Micah ate 6, Joe ate 3, and
Albert ate 3.

61. 124 oranges, 10 lemons, 8
pomegranates
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11.8 Section Exercises
1. A determinant is the sum

and products of the entries
in the matrix, so you can
always evaluate that
product—even if it does end
up being 0.

3. The inverse does not exist. 5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. Infinite solutions 45. 47.

49. Yes; 18, 38 51. Yes; 33, 36, 37 53. $7,000 in first account,
$3,000 in second account.

55. 120 children, 1,080 adult 57. 4 gal yellow, 6 gal blue 59. 13 green tomatoes, 17 red
tomatoes

61. Strawberries 18%, oranges
9%, kiwi 10%

63. 100 for movie 1, 230 for
movie 2, 312 for movie 3

65. 300 almonds, 400
cranberries, 300 cashews

Review Exercises
1. No 3. 5.

7. No solutions exist. 9. 11. Infinite solutions

13. No solutions exist. 15. 17.

19. 11, 17, 33 21. 23. No solution
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25. No solution 27. 29.

31. 33. 35.

37. 39. 41. undefined; dimensions do
not match

43. undefined; inner
dimensions do not match

45. 47.

49. undefined; inner
dimensions do not match

51. with infinite

solutions

53.

55. 57. No solutions exist. 59. No solutions exist.

61. 63. No inverse exists. 65.

67. 69. 17% oranges, 34%
bananas, 39% apples

71. 0

73. 6 75. 77. (x, 5x + 3)

79.

Practice Test
1. Yes 3. No solutions exist. 5.

7. 9.
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11. 13. 15.

17. 19. 21.

23. No solutions exist. 25. 27.

29. 32 or more cell phones per
day

Chapter 12
Try It
12.1 The Ellipse

1. 2. 3. center: vertices:
co-vertices: foci:

4. Standard form:
center: vertices:
co-vertices: foci:

5. Center: vertices:
and co-vertices:

and

foci: and

6.
center: vertices:

and co-
vertices: and

foci: and
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ⓐ
ⓑ The people are standing
358 feet apart.

7.

12.2 The Hyperbola

1. Vertices: Foci: 2. 3.

4. vertices: co-vertices:
foci:

asymptotes:

5. center: vertices:
and co-vertices:

and foci:

and

asymptotes:

6. The sides of the tower can be
modeled by the hyperbolic
equation.

12.3 The Parabola
1. Focus: Directrix:

Endpoints of the latus rectum:
2. Focus: Directrix:

Endpoints of the latus rectum:
3.
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4. Vertex: Axis of
symmetry: Focus:

Directrix:
Endpoints of the latus rectum:

and

5. Vertex: Axis of
symmetry: Focus:

Directrix:
Endpoints of the latus rectum:

and

ⓐ
ⓑ The depth of the cooker
is 500 mm

6.

12.4 Rotation of Axes

ⓐ hyperbola ⓑ ellipse1. 2. ⓐ hyperbola ⓑ ellipse3.

12.5 Conic Sections in Polar Coordinates
1. ellipse; 2. 3.

4.

12.1 Section Exercises
1. An ellipse is the set of all

points in the plane the sum
of whose distances from two
fixed points, called the foci,
is a constant.

3. This special case would be a
circle.

5. It is symmetric about the
x-axis, y-axis, and the origin.
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7. yes; 9. yes; 11. Endpoints of

major axis and
Endpoints of minor

axis and Foci

at

13.

Endpoints of major axis
and

Endpoints of minor axis
Foci at

15.

Endpoints of major axis
Endpoints of

minor axis Foci
at

17.

Endpoints of major axis
Endpoints of

minor axis
Foci at

19.

Endpoints of major axis
Endpoints of

minor axis
Foci at

21.

Endpoints of major axis

Endpoints of minor axis

Foci at

23. Endpoints

of major axis
Endpoints of minor axis

Foci at

25. Endpoints of

major axis
Endpoints of minor axis

Foci at

27. Foci

29. Focus 31. Foci 33. Center Vertices

Foci
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35. Center Vertices

Foci

37. Center Vertices

Focus

Note that this ellipse is a circle.
The circle has only one focus,
which coincides with the center.

39. Center Vertices

Foci

41. Center Vertices

Foci

43. Center Vertices

Foci

45. Center Vertices

Focus

47. 49.

51. 53. 55.

57. 59. square units. 61. square units.

63. 65. . Distance =
17.32 feet

67. Approximately 51.96 feet
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12.2 Section Exercises
1. A hyperbola is the set of

points in a plane the
difference of whose
distances from two fixed
points (foci) is a positive
constant.

3. The foci must lie on the
transverse axis and be in the
interior of the hyperbola.

5. The center must be the
midpoint of the line
segment joining the foci.

7. yes 9. yes 11. vertices:

foci:

asymptotes:

13. vertices:

foci:

asymptotes:

15. vertices:

foci:
asymptotes:

17. vertices:

foci:

asymptotes:

19. vertices:

foci:

asymptotes:

21. vertices:

foci:

asymptotes:

23. vertices:

foci:

asymptotes:

25. vertices:

foci:

asymptotes:

27.
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29. 31.

33. 35. 37.

39. 41. 43.

45. 47. 49.

51. 53. 55.
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57. 59.

61. 63. 65.

67. 69.

12.3 Section Exercises
1. A parabola is the set of

points in the plane that lie
equidistant from a fixed
point, the focus, and a fixed
line, the directrix.

3. The graph will open down. 5. The distance between the
focus and directrix will
increase.

7. yes 9. yes

11. 13.

15. 17.

19.
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21.

23.

25.

27.

29. 31.

33. 35. 37.

39. 41. 43.

45. 47. 49.

51. 53. 55.
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57. 59. 61.

63. At the point 2.25 feet above
the vertex.

65. 0.5625 feet 67.
height is 7.2 feet

69. 2304 feet

12.4 Section Exercises
1. The term causes a

rotation of the graph to
occur.

3. The conic section is a
hyperbola.

5. It gives the angle of rotation
of the axes in order to
eliminate the term.

7. parabola 9. hyperbola 11. ellipse

13. parabola 15. parabola 17.
ellipse

19. 21.

23. 25.

27. 29.

31. 33. 35.

37. 39.
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41. 43. 45.

47. 49. 51.

53. 55. 57.

59.

12.5 Section Exercises
1. If eccentricity is less than 1,

it is an ellipse. If eccentricity
is equal to 1, it is a parabola.
If eccentricity is greater than
1, it is a hyperbola.

3. The directrix will be parallel
to the polar axis.

5. One of the foci will be
located at the origin.

7. Parabola with and
directrix units below the
pole.

9. Hyperbola with and
directrix units above the
pole.

11. Parabola with and
directrix units to the
right of the pole.
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13. Ellipse with and
directrix units to the right
of the pole.

15. Hyperbola with and

directrix units above
the pole.

17. Hyperbola with and
directrix units to the
right of the pole.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.

Review Exercises

1. center:

vertices:

foci:
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3.

5. center: vertices:

foci:

7. center: vertices:

foci:

9.

11. Approximately 35.71 feet 13. center:

vertices:
foci:

15.

center: vertices:
foci:

17. 19. 21.

23.
vertex: focus:

directrix:

25. vertex:
focus:

directrix:

27.

29. 31. 33. parabola
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35.
ellipse

37. 39.

41. Hyperbola with and
directrix units to the left
of the pole.

43. Ellipse with and
directrix unit above the
pole.

45.

47. 49.

Practice Test

1. center:

vertices:

foci:

3. center: vertices:

foci:

5.
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7. center:

vertices foci:

asymptotes:

9. center: vertices:
foci:

asymptotes:

11.

13.
vertex: focus:

directrix:

15. 17. Approximately feet

19. parabola; 21. 23. Hyperbola with and

directrix units to the
right of the pole.

25.
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Chapter 13
Try It
13.1 Sequences and Their Notations
1. The first five terms are 2. The first five terms are 3. The first six terms are

4. 5. 6.

7. 8. 9. The first five terms are

13.2 Arithmetic Sequences
1. The sequence is arithmetic.

The common difference is
2. The sequence is not

arithmetic because
3.

4. 5. 6.

7. There are 11 terms in the
sequence.

8. The formula is
and it will

take her 42 minutes.

13.3 Geometric Sequences
1. The sequence is not

geometric because
.

2. The sequence is geometric.
The common ratio is .

3.

4. 5. 6.

ⓐ
ⓑ The number of hits will
be about 333.

7.

13.4 Series and Their Notations
1. 38 2. 3.

4. 5. $2,025 6.

7. 9,840 8. $275,513.31 9. The sum is not defined.
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10. The sum of the infinite
series is defined.

11. The sum of the infinite
series is defined.

12. 3

13. The series is not geometric. 14. 15. $32,775.87

13.5 Counting Principles
1. 7 2. There are 60 possible

breakfast specials.
3. 120

4. 60 5. 12 6.

7. 8. 9. 64 sundaes

10. 840

13.6 Binomial Theorem
ⓐ 35 ⓑ 3301. ⓐ

ⓑ

2. 3.

13.7 Probability
1.

Outcome Probability

Heads

Tails

2. 3.

4. 5. 6.

13.1 Section Exercises
1. A sequence is an ordered list

of numbers that can be
either finite or infinite in
number. When a finite
sequence is defined by a
formula, its domain is a
subset of the non-negative
integers. When an infinite
sequence is defined by a
formula, its domain is all
positive or all non-negative
integers.

3. Yes, both sets go on
indefinitely, so they are both
infinite sequences.

5. A factorial is the product of a positive
integer and all the positive integers below
it. An exclamation point is used to indicate
the operation. Answers may vary. An
example of the benefit of using factorial
notation is when indicating the product It
is much easier to write than it is to write
out
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7. First four terms: 9. First four terms:
.

11. First four terms:
.

13. First four terms:
.

15. First four terms: 17.

19. 21.

23. 25. 27. First five terms:

29. First five terms: 31.

33. 35. 37.

39. 41. 43. First four terms:

45. First four terms: 47. 49.

51. 53. 55.

57. First five terms: , ,

, ,

59. First five terms: 2, 3, 5, 17,
65537

61.

63. First six terms: 0.042, 0.146,
0.875, 2.385, 4.708

65. First four terms: 5.975,
2.765, 185.743, 1057.25,
6023.521

67. If is a term in
the sequence, then solving
the equation

for will
yield a non-negative
integer. However, if

then
so is

not a term in the sequence.

69. 71.
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13.2 Section Exercises
1. A sequence where each

successive term of the
sequence increases (or
decreases) by a constant
value.

3. We find whether the
difference between all
consecutive terms is the
same. This is the same as
saying that the sequence
has a common difference.

5. Both arithmetic sequences
and linear functions have a
constant rate of change.
They are different because
their domains are not the
same; linear functions are
defined for all real numbers,
and arithmetic sequences
are defined for natural
numbers or a subset of the
natural numbers.

7. The common difference is 9. The sequence is not
arithmetic because

11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33.

35. 37.

39. 41. First five terms: 43.

45. 47. 49.

51. 53. There are 10 terms in the
sequence.

55. There are 6 terms in the
sequence.

57. The graph does not
represent an arithmetic
sequence.

59. 61.
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63. 65. 67. Answers will vary.
Examples: and

69. 71. The sequence begins to
have negative values at the
13th term,

73. Answers will vary. Check to
see that the sequence is
arithmetic. Example:
Recursive formula:

First 4 terms:

13.3 Section Exercises
1. A sequence in which the

ratio between any two
consecutive terms is
constant.

3. Divide each term in a
sequence by the preceding
term. If the resulting
quotients are equal, then
the sequence is geometric.

5. Both geometric sequences
and exponential functions
have a constant ratio.
However, their domains are
not the same. Exponential
functions are defined for all
real numbers, and
geometric sequences are
defined only for positive
integers. Another difference
is that the base of a
geometric sequence (the
common ratio) can be
negative, but the base of an
exponential function must
be positive.

7. The common ratio is 9. The sequence is geometric.
The common ratio is 2.

11. The sequence is geometric.
The common ratio is

13. The sequence is geometric.
The common ratio is

15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.
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37. 39. 41.

43. 45. There are terms in the
sequence.

47. The graph does not
represent a geometric
sequence.

49. 51. Answers will vary.
Examples:

and

53.

55. The sequence exceeds
at the 14th term,

57. is the first non-
integer value

59. Answers will vary. Example:
Explicit formula with a decimal
common ratio:

First 4
terms:

13.4 Section Exercises
1. An partial sum is the

sum of the first terms of a
sequence.

3. A geometric series is the
sum of the terms in a
geometric sequence.

5. An annuity is a series of
regular equal payments that
earn a constant
compounded interest.

7. 9. 11.

13. 15. 17.

19. 21.

23. The series is defined. 25. The series is defined. 27.
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29. Sample answer: The graph
of seems to be
approaching 1. This makes

sense because

∞

is a defined infinite
geometric series with

31. 49 33. 254

35. 37. 39.

41. 43. 45.

47. $3,705.42 49. $695,823.97 51.

53. 9 terms 55. 57. $400 per month

59. 420 feet 61. 12 feet

13.5 Section Exercises
1. There are ways for

either event or event to
occur.

3. The addition principle is
applied when determining
the total possible of
outcomes of either event
occurring. The multiplication
principle is applied when
determining the total
possible outcomes of both
events occurring. The word
“or” usually implies an
addition problem. The word
“and” usually implies a
multiplication problem.

5. A combination;

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35. 9
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37. Yes, for the trivial cases
and If

then

  If

then

39. 41.

43. 45. 47.

49. 51. 53.

13.6 Section Exercises
1. A binomial coefficient is an

alternative way of denoting
the combination It
is defined as

3. The Binomial Theorem is
defined as

and can be used to expand
any binomial.

5. 15

7. 35 9. 10 11. 12,376

13. 15.

17.

19. 21.

23. 25.

27. 29.

31. 33. 35.
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37. 39. 41.

43. 45. 47.

49. The expression

cannot be
expanded using the
Binomial Theorem because
it cannot be rewritten as a
binomial.
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13.7 Section Exercises
1. probability; The probability

of an event is restricted to
values between and
inclusive of and

3. An experiment is an activity
with an observable result.

5. The probability of the union
of two events occurring is a
number that describes the
likelihood that at least one
of the events from a
probability model occurs. In
both a union of sets

and a union of
events the union
includes either or
both. The difference is that a
union of sets results in
another set, while the union
of events is a probability, so
it is always a numerical
value between and

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33.
1 2 3 4 5 6

1 (1,1)
2

(1,2)
3

(1,3)
4

(1,4)
5

(1,5)
6

(1,6)
7

2 (2,1)
3

(2,2)
4

(2,3)
5

(2,4)
6

(2,5)
7

(2,6)
8

3 (3,1)
4

(3,2)
5

(3,3)
6

(3,4)
7

(3,5)
8

(3,6)
9

4 (4,1)
5

(4,2)
6

(4,3)
7

(4,4)
8

(4,5)
9

(4,6)
10

5 (5,1)
6

(5,2)
7

(5,3)
8

(5,4)
9

(5,5)
10

(5,6)
11

6 (6,1)
7

(6,2)
8

(6,3)
9

(6,4)
10

(6,5)
11

(6,6)
12

35.

37. 39. 41.

43. 45. 47.
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49. 51. 53.

55. 57.

59.

Review Exercises
1. 3. 5. The sequence is arithmetic.

The common difference is

7. 9. 11.

13. 15. 4, 16, 64, 256, 1024 17.

19. 21. 23.

25. 27. 29. $5,617.61

31. 6 33. 35.

37. 39. 41.

43. 45.

47.
1 2 3 4 5 6

1 1,1 1,2 1,3 1,4 1,5 1,6

2 2,1 2,2 2,3 2,4 2,5 2,6

3 3,1 3,2 3,3 3,4 3,5 3,6

4 4,1 4,2 4,3 4,4 4,5 4,6

5 5,1 5,2 5,3 5,4 5,5 5,6

6 6,1 6,2 6,3 6,4 6,5 6,6

49. 51.

53. 55. 57.
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Practice Test
1. 3. The sequence is arithmetic.

The common difference is
5.

7. The sequence is geometric.
The common ratio is

9. 11.

13. 15. Total in account:
Interest

earned:

17.

19. 21. 23.

25. 27. 29.
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Index
A
AAS (angle-angle-side) 894
absolute maximum 233
absolute minimum 233
absolute value 216, 287
absolute value equation 156, 156
absolute value function 213
absolute value functions 287, 291
absolute value inequality 166, 167
addition method 1032, 1034, 1038
Addition Principle 1282
addition property 163
adjacent side 705
algebraic expression 17
altitude 894
ambiguous case 897
amplitude 764
angle 682
angle of depression 712
angle of elevation 712, 894
angle of rotation 1202
angular speed 698, 698
annual interest 1276
annual percentage rate (APR) 551
annuity 1276
apoapsis 1212
arc 686
arc length 687, 695, 718
arccosine 801
Archimedes’ spiral 953
arcsine 801
arctangent 801
area 118
area of a circle 419
area of a sector 696
argument 962
arithmetic sequence 1247, 1248,
1250, 1251, 1269
arithmetic series 1269
arrow notation 485
associative property of addition 14
associative property of
multiplication 14
asymptotes 1165
augmented matrix 1094, 1098,
1099, 1113
average rate of change 223
axes of symmetry 1165
axis of symmetry 400, 403, 1191,
1192

B
base 12
binomial 51, 463
binomial coefficient 1293
binomial expansion 1293, 1296

Binomial Theorem 1295
break-even point 1040

C
cardioid 944
carrying capacity 638
Cartesian coordinate system 84
Cartesian equation 932
Celsius 295
center of a hyperbola 1165
center of an ellipse 1149
central rectangle 1165
change-of-base formula 614, 615
circle 1062, 1063
circular motion 772
circumference 686
co-vertex 1149
co-vertices 1151
coefficient 51, 51, 420, 473
coefficient matrix 1094, 1096,
1115, 1118
cofunction 841
cofunction identities 710, 841
column 1081
column matrix 1082
combinations 1287, 1293
combining functions 241
common base 619
common difference 1247, 1269
common logarithm 579
common ratio 1259, 1271
commutative 242
commutative property of addition
14
commutative property of
multiplication 14
complement of an event 1304
completing the square 141, 142
complex conjugate 130
Complex Conjugate Theorem 477
complex number 126, 958
complex plane 126, 958
composite function 241
composition of functions 241
compound inequality 165
compound interest 551
compression 338, 567, 593
conditional equation 99
conic 1148, 1164, 1219
conic section 1200
conic sections 977
conjugate axis 1165
consistent system 1029
constant 17
constant function 213
constant of variation 522, 522

continuous 440
continuous function 431
convex limaçons 946
coordinate plane 1183
correlation coefficient 379
cosecant 736, 785
cosecant function 785, 786, 789,
824
cosine 861, 862
cosine function 718, 761, 763, 765,
768, 772
cost function 239, 1039
cotangent 736, 791
cotangent function 791, 824
coterminal angles 692, 694
Cramer’s Rule 1124, 1125, 1127,
1131
cube root 420
cubic functions 512
curvilinear path 970

D
De Moivre 964
De Moivre’s Theorem 965, 966
decompose a composite function
248
decomposition 1071
decreasing function 229, 326
decreasing linear function 326
degenerate conic sections 1198
degree 51, 51, 425, 683
dependent system 1029, 1038,
1052
dependent variable 182
Descartes 958
Descartes’ Rule of Signs 479
determinant 1123, 1126, 1127
difference of squares 56
dimpled limaçons 946
direct variation 522, 522
directrix 1183, 1186, 1187, 1188,
1191, 1212, 1214, 1218, 1219, 1220
discriminant 144, 144
displacement 698
distance formula 90, 833, 1166,
1184
distributive property 15
diverges 1273
dividend 462
Division Algorithm 462, 471
divisor 462
domain 182, 191, 205, 206, 207,
208, 800, 801
domain and range 205, 205
domain of a composite function
246
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dot product 1007
double-angle formulas 848, 848
doubling time 636
Dürer 948

E
eccentricity 1213, 1214
electrostatic force 226
elimination 1063
ellipse 985, 985, 1063, 1148, 1149,
1151, 1152, 1157, 1182, 1214, 1218
ellipsis 1232
end behavior 421, 496
endpoint 226, 682
entry 1081
equation 19, 189
equation in quadratic form 157
equation in two variables 86
Euler 958
even function 269, 823
even-odd identities 823, 825
event 1300
experiment 1300
explicit formula 1232, 1233, 1234,
1251, 1262
exponent 12
Exponential decay 542, 549, 562,
631, 634, 637, 650
exponential equation 618
exponential function 543
exponential growth 542, 545, 563,
631, 636, 638
exponential notation 12
extraneous solution 623
extraneous solutions 153
extrapolation 377

F
factor by grouping 62
Factor Theorem 472
factorial 1241
factoring 135
Fahrenheit 295
feasible region 1066
finite arithmetic sequence 1253
finite sequence 1233
foci 1148, 1150, 1151, 1166
focus 1148, 1183, 1186, 1187, 1188,
1191, 1212, 1218, 1219, 1220
FOIL 53
formula 19, 189
function 182, 217
function notation 184
Fundamental Counting Principle
1283
Fundamental Theorem of Algebra
476, 477

G
Gauss 958, 1047, 1094
Gaussian elimination 1047, 1096,
1098
general form 401
general form of a quadratic
function 403
Generalized Pythagorean
Theorem 912
geometric sequence 1259, 1271
geometric series 1271
global maximum 454, 454
global minimum 454, 454
graph in two variables 86
gravity 988
greatest common factor 60, 60,
135

H
half-angle formulas 853, 854
half-life 626, 631
Heaviside method 1073
Heron of Alexandria 917
Heron’s formula 917
horizontal asymptote 488, 494,
496
horizontal compression 275, 877
horizontal line 108, 344, 345
horizontal line test 196
horizontal reflection 265
horizontal shift 258, 565, 589, 761
horizontal stretch 275
hyperbola 1165, 1168, 1169, 1170,
1172, 1173, 1175, 1177, 1183, 1214,
1217
hypotenuse 705

I
identities 742
identity equation 99
identity matrix 1108, 1108, 1113
identity property of addition 15
identity property of multiplication
15
imaginary number 126
inconsistent equation 99
inconsistent system 1029, 1037,
1051
increasing function 229, 326
increasing linear function 326
independent system 1029
independent variable 182
index 45, 45
index of summation 1268
inequality 1065
infinite geometric sequence 1273
infinite sequence 1233
infinite series 1273

initial point 995, 998
initial side 683
inner-loop limaçons 948
input 182
integers 8, 11
intercepts 89
Intermediate Value Theorem 451,
451
interpolation 377
intersection 1302
interval 162
interval notation 162, 205, 229
inverse cosine function 801
inverse function 296, 512
inverse matrix 1113, 1115
inverse of a radical function 515
inverse of a rational function 518
inverse property of addition 16
inverse property of multiplication
16
inverse sine function 801
inverse tangent function 801
inverse trigonometric functions
800, 801, 804, 808
inverse variation 524
inverse variations 524
inversely proportional 524
invertible functions 511
invertible matrix 1108, 1123
irrational numbers 9, 11

J
Johnson 1182
joint variation 526

K
Kovalevskaya 1147
Kronecker 958

L
latus rectum 1183, 1186, 1187,
1191
Law of Cosines 912, 914
Law of Sines 895, 913
leading coefficient 51, 51, 425
leading term 51, 51, 425
least common denominator 71,
101
least squares regression 378
lemniscate 949
linear equation 99
Linear Factorization Theorem 477,
478
linear function 324, 325
linear growth 542
linear model 361, 374
linear relationship 374
linear speed 698
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local extrema 228
local maximum 228, 454
local minimum 228, 454
logarithm 577
logarithmic equation 623
logarithmic model 653
logistic growth model 638
long division 461
lower limit of summation 1268

M
magnitude 216, 257, 959, 995
main diagonal 1096
major and minor axes 1151
major axis 1149, 1153
matrix 1081, 1082, 1094
matrix multiplication 1087, 1110,
1114
matrix operations 1082
maximum value 400
Maxwell 1147
measure of an angle 683
midline 764
midpoint formula 93
minimum value 400
minor axis 1149
model breakdown 376
modulus 216, 962
monomial 51
Multiplication Principle 1283
multiplication property 163
multiplicative inverse 1110, 1111
multiplicative inverse of a matrix
1108, 1108
multiplicity 444, 445
mutually exclusive events 1302

N
n factorial 1241
natural logarithm 581, 622
natural numbers 8, 11, 182
negative angle 683
Newton’s Law of Cooling 637
nominal rate 551
non-right triangles 894
nondegenerate conic sections
1198
nonlinear inequality 1065
nth partial sum 1267
nth root of a complex number 966
nth term of the sequence 1232,
1233

O
oblique triangle 894
odd function 269, 823
one-loop limaçon 946
one-to-one 563, 576, 607, 614

one-to-one function 194, 296, 800
opposite side 705
order of magnitude 632
order of operations 12
ordered pair 85, 182, 207
ordered triple 1047
origin 84, 288
outcomes 1300
output 182

P
parabola 400, 407, 983, 1059, 1182,
1187, 1187, 1188, 1192, 1213, 1215,
1215
parallel 108
parallel lines 346, 348
parallelograms 999
parameter 970
parametric equations 970, 982,
983
parametric form 985
parent function 589
partial fraction 1071
partial fraction decomposition
1071, 1071
Pascal 948
Pascal's Triangle 1295
perfect square trinomial 55
periapsis 1212
perimeter 118
period 745, 761, 779, 781, 868
periodic function 761
permutation 1284
perpendicular 109
perpendicular lines 347, 348
pH 606
phase shift 766
piecewise function 216
piecewise functions 1236
point-slope form 329
point-slope formula 110, 1170
polar axis 925
polar coordinates 925, 927, 929,
939
polar equation 933, 940, 941, 1213
polar form 959
polar form of a complex number
961
polar form of a conic 1220
polar grid 925, 926
pole 925
polynomial 51, 51, 472
polynomial equation 152
polynomial function 424, 438, 446,
452
position vector 995, 997
positive angle 683
power function 419

power rule for logarithms 610, 614
principal nth root 45, 45
principal square root 39, 40
probability 1300
probability model 1300
product of two matrices 1087
product rule for logarithms 607,
609
product-to-sum formulas 861, 862
profit function 1040
properties of determinants 1129
Proxima Centauri 632
Pythagoras 958
Pythagorean identities 822, 825
Pythagorean identity 833
Pythagorean Identity 721, 721, 742
Pythagorean Theorem 90, 145,
849, 878, 912, 986

Q
quadrant 84
quadrantal angle 684
quadratic 1075, 1077
quadratic equation 135, 135, 141,
142, 872
quadratic formula 142, 143, 144,
873
quadratic function 403, 406
quotient 462
quotient identities 824, 825
quotient rule for logarithms 609

R
radian 687, 688, 689
radian measure 688
radical 39, 40
radical equation 154
radical expression 39, 40
Radical expressions 46
radical functions 511
radicand 39, 40, 153
radiocarbon dating 635
range 182, 801
rate of change 223, 361
rational equation 102
rational expression 68, 100, 1071,
1072, 1077
rational function 490, 498, 502
rational number 100
rational numbers 8, 11
Rational Zero Theorem 473, 473
ray 682
real number line 10
real numbers 10
reciprocal 109, 296, 420
reciprocal function 485
reciprocal identities 824, 825
reciprocal identity 784, 791
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rectangular coordinates 925, 927,
929
rectangular equation 933, 976
rectangular form 961, 985
recursive formula 1239, 1250,
1250, 1261
reduction formulas 852, 852
reference angle 693, 729, 739
reflection 568, 596
regression analysis 650, 653, 656
regression line 378
relation 182
remainder 462
Remainder Theorem 471
removable discontinuity 492, 493
Restricting the domain 304
resultant 999
revenue function 1039
Richter Scale 576
right triangle 705, 800
roots 400
rose curve 951
row 1081
row matrix 1082
row operations 1096, 1098, 1101,
1111, 1112, 1113, 1113
row-echelon form 1096, 1098,
1099
row-equivalent 1096

S
sample space 1300
SAS (side-angle-side) triangle 911
scalar 1000, 1084
scalar multiple 1001, 1084
Scalar multiplication 1000, 1084
scatter plot 374
scientific notation 33, 33, 34
secant 736, 784
secant function 784
sector of a circle 696
sequence 1232, 1233, 1247
series 1267
set-builder notation 162, 209
sigma 1267
sine 823, 861, 863
sine function 718, 760, 762, 765,
771, 774
sinusoidal function 763
slope 104, 325
slope-intercept form 324, 325, 329
smooth curve 431

solution set 99, 1048
solving systems of linear
equations 1032
special angles 832
square matrix 1082, 1123
square root property 140
SSA (side-side-angle) 894
SSS (side-side-side) triangle 911
standard form 107
standard form of a quadratic
function 403
standard position 683, 684, 995
stretch 567
stretching/compressing factor
782, 783
substitution method 1031
sum and difference formulas for
cosine 833
sum and difference formulas for
sine 835
sum and difference formulas for
tangent 837
sum-to-product formulas 863, 863
summation notation 1268
surface area 510
symmetry test 940
synthetic division 465, 475
system of equations 1094, 1095,
1098, 1099, 1115
system of linear equations 366,
1028, 1030, 1031
system of nonlinear equations
1059
system of nonlinear inequalities
1066
system of three equations in three
variables 1127

T
tangent 736, 779, 781
tangent function 780, 781, 782,
794, 824
term 1232, 1247
term of a polynomial 51, 51
term of a polynomial function 424
terminal point 995, 998
terminal side 683
transformation 255, 338
translation 1152
transverse axis 1165
trigonometric equations 977
trigonometric functions 739

trigonometric identities 912
trinomial 51
turning point 429, 448

U
union of two events 1301
unit circle 689, 705, 718, 730, 869
unit vector 1003
upper limit of summation 1268
upper triangular form 1047

V
variable 17
varies directly 522, 522
varies inversely 524
vector 995
vector addition 999
vertex 400, 682, 1149, 1150, 1183,
1191
vertex form of a quadratic
function 402
vertical asymptote 487, 490, 496,
801
vertical compression 271
vertical line 107, 344, 345
vertical line test 195
vertical reflection 265
vertical shift 256, 338, 565, 591,
637, 766
vertical stretch 271, 338, 593
vertices 1149, 1151
volume 118
volume of a sphere 419

W
whole numbers 8, 11

X
x-axis 84
x-coordinate 85
x-intercept 89, 342

Y
y-axis 84
y-coordinate 85
y-intercept 89, 325

Z
zero-product property 135
zeros 400, 440, 444, 475, 944
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