Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Consider the function $f(x)=3 \csc \left(\pi x+\frac{\pi}{2}\right)-1$. Show all steps in finding the vertical stretch factor, the period, the phase shift and the midline, and the sketch the graph of $y=f(x)$.
(b) The graph of $y=f(x)$ in the figure is a transform of $y=\tan x$. Show all steps in identifying the parameters A, B, C and D, and then give a complete formula for $f(x)$.

2. (a) Compute the exact value of $\cos \left(\tan ^{-1}(5)\right)$.
(b) Suppose a 13 -foot ladder is leaning against a building, reaching to the bottom of a second-floor window 12 feet above the ground. What angle, in radians, does the ladder make with the building? (Make a figure and show all your steps.)
3. (a) Show that $\frac{\csc ^{2} \theta}{\csc ^{2} \theta-1}=\sec ^{2} \theta$.
(b) Simplify $\left(1-\sin ^{2} x\right)\left(1+\tan ^{2} x\right)$.
4. Assume $\tan \alpha=3, \pi<\alpha<\frac{3 \pi}{2}$, and $\sin \beta=\frac{1}{5}, \frac{\pi}{2}<\beta<\pi$. Compute the exact values of $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$.
5. Two wires are attached to the side of a 4 -story building as shown in the figure.

(i) Find the exact value of the tangent of the angle θ formed by the two wires.
(ii) Use your calculators to find the approximate value of the angle θ in degrees rounded to two decimal digits.
