QUIZ 6 - MATH 131 Your Name:

Read each problem **very carefully** before starting to solve it and do only what is asked. Each problem is worth around 5 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

- 1. [4 points] Starting from the formula for $\cos(\alpha + \beta)$, give the following, showing all steps:
 - (a) A formula expressing $\cos(2\theta)$ exclusively in terms of $\cos \theta$.

(b) A formula expressing $\cos\left(\frac{\theta}{2}\right)$ exclusively in terms of $\cos\theta$.

(c) Use the formula obtained in Part (b) to calculate the exact value of $\cos\left(\frac{7\pi}{8}\right)$.

$2. \ [4 \text{ points}]$

(a) If $\sin \theta = -\frac{3}{7}$ and θ lies in Quadrant III, compute the exact values of $\sin\left(\frac{\theta}{2}\right)$ and $\cos\left(\frac{\theta}{2}\right)$.

(b) Verify the following identity

 $\cos\left(3x\right) = \cos^3 x - 3\sin^2 x \cos x.$

3. [4 points]

- (a) Convert a product to a sum or vice-versa, as appropriate, but do not evaluate:
 - (i) $\cos(23^\circ)\sin(17^\circ) =$

(ii) $\sin(76^\circ) + \sin(14^\circ) =$

(b) Prove that $\sin(x) + \sin(3x) = 4\sin(x)\cos^2(x)$.

- 4. [4 points] Solve the following equations, where $0 \le \theta < 2\pi$:
 - (a) $2\sin(2\theta) = \sqrt{3}$.

(b) $2\sin\theta\cos\theta - \sin\theta + 2\cos\theta - 1 = 0$ (Hint: Find a way to factor.)

(c) $8\sin^4\theta - 6\sin^2\theta + 1 = 0$ (Hint: Use substitution.)