Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Find the general solution of the differential equation

$$
y^{(4)}+7 y^{\prime \prime \prime}+12 y^{\prime \prime}+14 y^{\prime}+20 y=0 .
$$

Assume that we are given that $r=-5$ is one of the roots of its characteristic equation.
2. Find the general solution of

$$
y^{\prime \prime \prime}+4 y^{\prime}=16 t+4 .
$$

3. (a) Suppose we know that $\mathcal{L}\left(y^{\prime}\right)=s F(s)-y(0)$, where $F(s)=\mathcal{L}\{y\}$. Show, based on this, that

$$
\mathcal{L}\left\{y^{\prime \prime}\right\}=s^{2} F(s)-s y(0)-y^{\prime}(0) .
$$

(b) Compute from scratch the Laplace transform of $f(t)=u_{3}(t)-u_{7}(t)$.
4. Compute the Laplace transform $F(s)$ of the solution $f(t)$ of the initial value problem

$$
y^{\prime \prime}-y^{\prime}=u_{3}(t)-u_{1}(t), \quad y(0)=2, y^{\prime}(0)=0 .
$$

5. Compute the inverse Laplace transform of $F(s)=\frac{e^{-5 s}(s+11)}{s^{2}-6 s+58}$.
