EXAM 2 - MATH 111 YOUR NAME:

Thursday, October 12
 George Voutsadakis

Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Consider the function $f(x)=\frac{7 x+3}{2 x-5}$.
(a) Find the domain of $f(x)$.
(b) Find a formula for the inverse $f^{-1}(x)$.
(c) Find the range of $f(x)$. (Hint: Use $f^{-1}(x)$ in a smart way.)
2. (a) Line L_{1} has equation $x-7 y=10$. Find an equation for a line L_{2} which is perpendicular to the line L_{1} and passes through the point $(2,17)$.
(b) A parabola has vertex $(-7,-5)$ and passes through the origin. Find an equation for the parabola and leave it in general form.
3. A sandwich store owner has noticed that she can sell 20 sandwiches per hour at $\$ 8$ each, but that the number increases to 32 if she offers them at the discount price of $\$ 5$ each.
(a) Assuming that the function $N(p)$ giving the number N of sandwiches sold in terms of the price p is linear, find a formula for $N(p)$.
(b) Find an expression for the hourly revenue $R(p)$ of the store in terms of the price p at which each sandwich is sold.
(c) Which price per sandwich would maximize the store's revenue?
4. Consider the function $f(x)=-x(x+2)^{2}(x-3)^{2}$.
(a) Describe formally the end-behavior of $f(x)$.
(b) Find the y-intercept and the x-intercepts, including multiplicities.
(c) Sketch the graph of $y=f(x)$.
5. Consider the graph of a polynomial function given below.

(a) Describe its end behavior formally.
(b) Give its y-intercept and its x-intercepts, including multiplicities.
(c) Find a possible formula for $y=f(x)$.
