EXAM 3 - MATH 152 YOUR NAME:

 Friday, November 10 George VoutsadakisRead each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Find an exact expression (no decimals) for the Taylor polynomial $T_{3}(x)$ of

$$
f(x)=x^{2} e^{-x}
$$

centered at $a=1$.
2. Solve the initial value problem

$$
y y^{\prime}=(t+1)\left(y^{2}+1\right), \quad y(0)=4 .
$$

3. Decide whether the following sequences converge or diverge. You should state clearly which criterion you are using and how you are applying it.
(a) $a_{n}=\frac{\sqrt{n}}{\sqrt{n}+7}$
(b) $b_{n}=\frac{2^{n}}{n!}$.
4. (a) Find the sum of the series $\sum_{n=0}^{\infty} \frac{3(-2)^{n}-5^{n+1}}{8^{n}}$
(b) Tell whether the following series is absolutely convergent, conditionally convergent or divergent, showing all steps and justifications. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[5]{n^{4}}}$.
5. Use whichever of the ratio or root test is appropriate to investigate convergence or divergence of the following series. Show all calculations and justifications.
(a) $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{n!}{e^{n}}$.
