EXAM 4 - MATH 310 YOUR NAME:

Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Find the particular solution of

$$
y^{\prime \prime}+y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

where $g(t)=\left\{\begin{array}{ll}\sin t, & \text { if } 0 \leq t<\pi \\ 0, & \text { if } t \geq \pi\end{array}\right.$.
2. Find the particular solution of

$$
y^{\prime \prime}+4 y^{\prime}=\delta(t-2 \pi) \cos t, \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

3. Express the solution of the initial value problem in terms of a convolution integral.

$$
y^{\prime \prime}+3 y^{\prime}+2 y=g(t), \quad y(0)=1, \quad y^{\prime}(0)=2 .
$$

4. Consider the following system of linear equations:

$$
\left\{\begin{array}{rlr}
-7 x_{1}-3 x_{2} & =6 \\
5 x_{1}+2 x_{2} & = & -5
\end{array}\right\} .
$$

(a) Write the system as a matrix equation $\mathbf{A x}=\mathbf{b}$.
(b) Find the inverse matrix \mathbf{A}^{-1} by hand.
(c) Multiply on the left by \mathbf{A}^{-1} to solve the system for \mathbf{x}.
5. Find the particular solution of the homogeneous system of linear first-order differential equations with constant coefficients.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
4 & -3 \\
2 & -3
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{-1}{3} .
$$

