Friday, September 20 George Voutsadakis

Read each problem **very carefully** before starting to solve it. Each problem is worth 10 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

- 1. Consider the function $f(x) = -x^2 + 3x + 7$.
 - (a) Compute f(5).
 - (b) Compute f(5+h) and simplify.

(c) Compute $\frac{f(5+h) - f(5)}{h}$ and simplify.

(d) Find for which values of the input the output of f is equal to -63.

2. Consider the piece-wise defined function

$$f(x) = \begin{cases} x^2, & \text{if } x < 0, \\ -x + 2, & \text{if } 0 \le x \le 1, \\ 2x - 2, & \text{if } x > 1. \end{cases}$$

(a) Compute the values

f(-1) =

f(0) =

f(1) =

$$f(2) =$$

(b) Sketch the graph of f(x) (please do it neatly and place labels on the axes for all important points).

- 3. Consider the functions $f(x) = \frac{3}{2x+1}$ and $g(x) = \frac{1}{x-5}$.
 - (a) Compute the value $(f \circ g)(7)$ showing all steps.

(b) Find a formula for $(g \circ f)(x)$ and simplify.

(c) Find the domain of each of the functions f and g.

(d) Find the domain of $f\circ g$ showing all your work.

4. In the following parts, you are supposed to detail the transformations leading from the function y = f(x) to the function indicated. To do this, fill-in the spaces left blank, as we did for many similar examples in class.

$$\begin{array}{cccc} y=f(x) & \longrightarrow & (& &) \\ & \longrightarrow & (& &) \\ & \longrightarrow & y=3f(x+2)-7 & (& &) \end{array}$$

5. (a) Solve the absolute value equation

$$|5x - 11| + 17 = 61.$$

(b) Discover a formula for the inverse function $f^{-1}(x)$ of $f(x) = \frac{x}{5-3x}$.