Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Consider the function $f(x)=x^{4}-32 x$.
(a) Compute $f^{\prime}(x)$ and find its critical point(s).
(b) Compute $f^{\prime \prime}(x)$ and find its critical point(s).
(c) Create the combined sign table for f^{\prime} and $f^{\prime \prime}$ and draw conclusions about f regarding monotonicity, concavity, relative extrema and inflection points. (Please, no separate tables for f^{\prime} and $f^{\prime \prime}$; I would like to see the combined sign table as shown in class, with curved arrows in the last line.)
2. In this problem I will guide you in creating an open-top box with a square base, having volume 108 cubic feet, using the least amount of materials.
(a) Assume that the box has base side x feet and height y feet. Write an equation for the volume of the box in terms of x and y. Then solve it for y.
(b) Write an equation for the surface area of the box in terms of both x and y and use the equation of Part (a) to eliminate y.
(c) Use the equation of Part (b) to find the size of x that minimizes the surface area of the box.
3. Find an equation for the tangent line to

$$
x^{2} y-y+1=2 x^{3}
$$

at $(x, y)=(2,5)$.
4. A spherical bubble is inflated at the rate of 9π cubic inches per second. Find how fast its radius is changing, when the radius is $\frac{3}{4}$ inches.
(The volume of a sphere as a function of its radius is given by $V=\frac{4}{3} \pi r^{3}$.)
5. (a) Compute the following derivatives:
$\left(x^{2} e^{x}\right)^{\prime}=$

$$
\left[\ln \left(x^{5}-3 x^{2}+1\right)\right]^{\prime}=
$$

(b) Find an equation for the tangent line to $f(x)=e^{x^{2}}$ at $x=1$.

