Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Write in terms of a single trigonometric function

$$
\cos \frac{3 x}{4} \cos \frac{x}{4}+\sin \frac{3 x}{4} \sin \frac{x}{4}=
$$

(b) Suppose $\sin \alpha=\frac{3}{5}$, α in Quadrant I, and $\tan \beta=\frac{5}{12}, \beta$ in Quadrant III. Compute $\cos (\alpha-\beta)$.
2. (a) Suppose $\sin \alpha=-\frac{3}{7}$ and $270^{\circ}<\alpha<360^{\circ}$. Calculate $\cos \frac{\alpha}{2}$.
(b) Verify the identity $\sin 2 x-\cot x=-\cot x \cos 2 x$ (please, write justifications for all your steps).
3. (a) Write as the sum/difference of two functions $\sin x \sin 5 x=$
(b) Write as the product of two functions $\sin 3 \theta+\sin 7 \theta=$
(c) Verify the identity $\sin 3 x-\sin x=2 \sin x-4 \sin ^{3} x$ (please, write justifications for all your steps).
4. (a) Calculate precisely (by hand) $\cos ^{-1}\left(\cos \frac{5 \pi}{4}\right)$.
(b) Do the same for $\sin \left(\sin ^{-1} \frac{2}{3}+\cos ^{-1} \frac{1}{5}\right)$
5. (a) Solve the equation $2 \sin x \cos x-\cos x=0$, where $0 \leq x<2 \pi$.
(b) Solve the equation $2 \sin ^{2} x-3 \sin x+1=0$, where $0 \leq x<2 \pi$.

