Read each problem very carefully before starting to solve it. Each problem is worth 5 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Suppose $\cos \alpha=-\frac{1}{3}$ and $\sin \beta=-\frac{3}{7}$, where $\frac{\pi}{2}<\alpha<\pi$ and $\frac{3 \pi}{2}<\beta<2 \pi$. Calculate the numbers $\sin (\alpha+\beta)$ and $\cos (\alpha-\beta)$.
2. Suppose $\tan \alpha=-\frac{7}{2}$, with $90^{\circ}<\alpha<180^{\circ}$. Calculate $\sin \frac{\alpha}{2}$.
3. Verify the identity

$$
\cos 3 x+\cos x=4 \cos ^{3} x-2 \cos x .
$$

You must write on the margin which identity you are using at each step.

Table of Identities:

Sum Identities:

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\sin \beta \cos \alpha \\
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}
\end{aligned}
$$

Double-Angle Identities \& Power-Reducing Identities:

From the Sum Identities you can figure these out easily. Recall that the technique involves taking β to be equal to α.
Half-Angle Identities:

$$
\begin{aligned}
\sin \frac{\alpha}{2} & = \pm \sqrt{\frac{1-\cos \alpha}{2}} \\
\cos \frac{\alpha}{2} & = \pm \sqrt{\frac{1+\cos \alpha}{2}}
\end{aligned}
$$

Product-to-Sum Identities:

$$
\begin{aligned}
\sin \alpha \cos \beta & =\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] \\
\cos \alpha \sin \beta & =\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)] \\
\cos \alpha \cos \beta & =\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)] \\
\sin \alpha \sin \beta & =\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]
\end{aligned}
$$

Sum-to-Product Identities:

$$
\begin{aligned}
\sin x+\sin y & =2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \\
\cos x+\cos y & =2 \cos \frac{x+y}{2} \cos \frac{x-y}{2} \\
\sin x-\sin y & =2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} \\
\cos x-\cos y & =-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}
\end{aligned}
$$

