Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Consider the 2×2 system $\left\{\begin{array}{l}7 x_{1}+5 x_{2}=20 \\ 4 x_{1}+3 x_{2}=11\end{array}\right\}$.
(a) Rewrite the system as a single matrix equation in the form $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{x}=\binom{x_{1}}{x_{2}}$.
(b) Find \boldsymbol{A}^{-1}.
(c) Apply matrix multiplication on the left by \boldsymbol{A}^{-1} to solve the system.
2. Solve the initial value problem $\boldsymbol{y}^{\prime}=\left(\begin{array}{rr}-5 & 1 \\ 4 & -2\end{array}\right) \boldsymbol{y}$, with $\boldsymbol{y}(0)=\binom{1}{2}$.
3. Solve the differential equation $\boldsymbol{y}^{\prime}=\left(\begin{array}{cc}-2 & 6 \\ -3 & 4\end{array}\right) \boldsymbol{y}$ and leave your answer in real form.
4. Consider a homogeneous system of first-order differential equations $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$. Suppose that we are given that, at $t_{0}=0$, the special fundamental matrix is

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
-2 e^{-t}+3 e^{7 t} & -2 e^{-t}+2 e^{7 t} \\
5 e^{-t}-5 e^{7 t} & 2 e^{-t}-e^{7 t}
\end{array}\right)
$$

(a) Write a general solution of the given system $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$.
(b) Write a particular solution of the initial value problem

$$
\boldsymbol{y}^{\prime}=A \boldsymbol{y}, \quad \boldsymbol{y}(0)=\binom{1}{-2} .
$$

5. Solve the differential equation $\boldsymbol{y}^{\prime}=\left(\begin{array}{ll}-2 & 1 \\ -1 & 0\end{array}\right) \boldsymbol{y}$ and leave your answer in real form.
