Read each problem very carefully before starting to solve it. Each problem is worth 5 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) The formal definition of the Laplace transform of a function $f(t)$ is

$$
F(s)=\mathcal{L}\{f(t)\}=
$$

(b) Use the definition above to compute $\mathcal{L}\{f\}$, where $f(t)=\left\{\begin{array}{ll}t, & \text { if } 0 \leq t<1 \\ 0, & \text { if } 1 \leq t\end{array}\right.$.
2. (a) Show in detail (do not skip any steps) that, if $F(s)=\mathcal{L}\{f(t)\}$, then

$$
\mathcal{L}\left\{e^{c t} f(t)\right\}=F(s-c)
$$

where c is an arbitrary constant.
(b) In class, we showed that $\mathcal{L}\{\sin a t\}=\frac{a}{s^{2}+a^{2}}$, for $s>0$. Use this and Part (a) to find an expression for $\mathcal{L}\left\{e^{7 t} \sin 3 t\right\}$.

