Read each problem very carefully before starting to solve it. Each problem is worth around 5 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Use the cofactor method to find the inverse \boldsymbol{A}^{-1} of $\boldsymbol{A}=\left(\begin{array}{ll}2 & -3 \\ 4 & -5\end{array}\right)$. Please, show all steps; do not simply provide the result.
(b) Use Gaussian elimination to find the inverse \boldsymbol{A}^{-1} of $\boldsymbol{A}=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$. Please show all steps; do not simply give the result.
2. The product rule for derivatives of matrix functions states that, given matrices $\boldsymbol{A}(t)$ and $\boldsymbol{B}(t)$, $\frac{d}{d t}(\boldsymbol{A B})=\frac{d \boldsymbol{A}}{d t} \boldsymbol{B}+\boldsymbol{A} \frac{d \boldsymbol{B}}{d t}$. Suppose $\boldsymbol{A}(t)=\left(\begin{array}{cc}\sin t & t \\ 1 & \cos t\end{array}\right)$ and $\boldsymbol{B}(t)=\left(\begin{array}{cc}e^{3 t} & -t \\ t^{2} & e^{-2 t}\end{array}\right)$.
(a) Compute $\boldsymbol{A B}$.
(b) Compute $\frac{d}{d t}(\boldsymbol{A B})$.
(c) Compute $\frac{d \boldsymbol{A}}{d t}$.
(d) Compute $\frac{d \boldsymbol{B}}{d t}$.
(e) Compute $\frac{d \boldsymbol{A}}{d t} \boldsymbol{B}+\boldsymbol{A} \frac{d \boldsymbol{B}}{d t}$.
