\qquad
Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Consider the polynomial $f(x)=x^{3}-3 x+2$.
(a) Note that $f(1)=0$. Use the Factor Theorem to find all factors of $f(x)$.
(b) Based on Part (a) give all zeros of $f(x)$ and their multiplicities.
(c) Based on Part (b), sketch the graph of $y=f(x)$. (Please, be neat and label all important points.)
2. The following figure show the graph of a polynomial function $y=f(x)$.

(a) Describe formally the end behavior of $y=f(x)$.
(b) Give the zeros and their multiplicities.
(c) Find a formula for $y=f(x)$.
3. The following figure shows the graph of a rational function $y=f(x)$.

(a) Find the vertical and horizontal asymptotes (these are lines).
(b) Find the x - and y-intercepts (these are points).
(c) Find a possible formula for $y=f(x)$.
4. Consider the function $f(x)=2(x-3)^{2}-1$.
(a) Sketch its graph neatly, labeling all important points.
(b) Restrict its domain so as to be able to consider an inverse function.
(c) Find a formula for the inverse of $f(x)$, assuming its domain is the one you gave in Part (b).
5. Suppose a quantity x varies

- directly with both y and the cube root of z;
- inversely with the square of w.
(a) Write an equation expressing the relation of joint variation described above (with undetermined constant).
(b) Suppose that, when $y=2, z=27, w=2$, we have $x=9$. Determine the constant you used in Part (a).
(c) Find the value of z, if $x=24, y=12$ and $w=3$.

