Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Suppose an oil producing country can sell 30 million barrels of oil at a price of $\$ 120$ per barrel. Each $\$ 10$ price increase results in a sales decrease of 2 million barrels. Suppose, in addition that it costs the country $\$ 10$ to produce a barrel of oil. Let z denote the number of $\$ 10$ price increases per barrel.
(a) Write an equation for the price per barrel as a function of z.

$$
p(z)=
$$

(b) Write an equation for the number of barrels (in millions, to keep the numbers small) sold as a function of z.
$q(z)=$
(c) Write equations for the revenue, the cost and the profit as functions of z.
$R(z)=$
$C(z)=$

$$
P(z)=
$$

(d) Find which price per barrel would maximize the country's profit.
2. Find an equation for the tangent line to the graph of $x^{3}-5 x y^{2}+3 y^{2}=-7 x$ at the point $(x, y)=(3,-2)$.
3. A company finds that its profit from selling x units of a product is $P=x^{3}-20 x^{2}+500 x$ dollars. If the sales are increasing by 10 units per week, how fast is the profit increasing when 50 units have been sold?
4. (a) Solve the logarithmic equation $\log _{3} x+\log _{3}(x+3)=\log _{3}(2 x+6)$.
(b) How many years will it take for a deposit of $\$ 10,000$ in an account yielding 3% annually compounded monthly to increase to $\$ 12,000$?
5. (a) Compute the following derivatives:
$\left(x^{2} e^{x^{3}+7 x}\right)^{\prime}=$

$$
\left(\frac{\ln x}{x+5}\right)^{\prime}=
$$

(b) Find an equation for the tangent line to the graph of $f(x)=e^{-x^{2}} \ln (2 x+1)$ at $x=1$. (If you use decimals, provide the exact expressions you plugged in the calculator to compute them!)

