Two Randomized Algorithms

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

Seminar Presentation
Lake Superior State University

George Voutsadakis (LSSU)

Two Randomized Algorithms

Sault Sainte Marie, 2022 1 / 17

The Bipartite Matching Problem

• A bipartite graph G = (U, V, E) consists of

• two sets of vertices
$$U = \{u_1, \ldots, u_n\},$$

 $V = \{v_1, \ldots, v_n\};$

- A set $E \subseteq U \times V$ of edges.
- A perfect matching in a bipartite graph G is a subset M ⊆ E, such that, for any two edges (u, v), (u', v') ∈ M, u ≠ u' and v ≠ v'.

Equivalently, a perfect matching may be viewed as a permutation π of $\{1, 2, ..., n\}$, such that $(u_i, v_{\pi(i)}) \in E$, for all i = 1, ..., n.

BIPARTITEMATCHING: Given a bipartite graph G = (U, V, E), does it have a perfect matching?

Matrices and Determinants

- Given a bipartite graph G, consider the $n \times n$ matrix A^G whose (i, j)-th element is a variable x_{ij} , if $(u_i, v_j) \in E$, and zero otherwise.
- The **determinant** of A^G is defined as

$$\det(A^G) = \sum_{\pi} \sigma(\pi) \prod_{i=1}^n A^G_{i,\pi(i)},$$

- π ranges over all permutations of *n* elements;
- $\sigma(\pi)$ is 1 if π is composed of an even number of transpositions, and -1 otherwise.
- Note the following:
 - The only nonzero terms in this sum are those that correspond to perfect matchings π .
 - Since all variables appear once, all of these terms are different monomials, and hence they do not cancel in the end result.

So, G has a perfect matching iff $det(A^G)$ is not identically zero.

Gaussian Elimination

• The simplest and oldest method to compute determinants is Gaussian elimination.

$$\begin{bmatrix} 1 & 3 & 2 \\ 1 & 7 & -2 \\ -1 & 3 & -2 \end{bmatrix} \xrightarrow{r_2 \leftarrow r_2 - r_1}_{r_3 \leftarrow r_3 + r_1} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 4 & -4 \\ 0 & 6 & 0 \end{bmatrix} \xrightarrow{r_3 \leftarrow r_3 - \frac{3}{2}r_2} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 4 & -4 \\ 0 & 0 & 6 \end{bmatrix}$$

It follows that $det(A) = 1 \cdot 4 \cdot 6 = 24$.

- For numerical matrices, this algorithm runs in polynomial-time.
- Unfortunately, for symbolic matrices, its worst-case running time becomes exponential.

The Symbolic Identity Problem

• But we are not interested in actually evaluating the symbolic determinant!

We just need to tell whether it is identically zero or not.

- So we can pursue the following idea:
 - We substitute arbitrary integers for the variables.
 - Then we obtain a numerical matrix, whose determinant we can calculate in polynomial time by Gaussian elimination.
 - If this determinant is not zero, then the symbolic determinant cannot be identically zero!
 - But the numerical determinant may be zero, although the symbolic one was not.

This happens if we stumble upon one of the roots of the determinant (seen as a polynomial).

A Monte Carlo Algorithm for Determinant Identity

How Unlucky Can We Be?

Lemma

Let $p(x_1, \ldots, x_m) \neq 0$ be a polynomial in *m* variables each of degree at most *d* in it, and let M > 0 be an integer. Then the number of *m*-tuples $(x_1, \ldots, x_m) \in \{0, 1, \ldots, M-1\}^m$ such that $p(x_1, \ldots, x_m) = 0$ is at most mdM^{m-1} .

- The proof is by induction on *m*, the number of variables.
- When m = 1 the lemma says that no polynomial of degree $\leq d$ can have more than d roots.

Suppose the result is true for m-1 variables.

Write p as a polynomial in x_m , whose coefficients are polynomials in x_1, \ldots, x_{m-1} . E.g.,

$$\begin{array}{l} x_1^3 x_2^2 + x_1^3 x_3^3 + x_1^2 x_2 x_3^2 + x_1^2 x_2 x_3 + x_1 x_2^2 x_3 + x_1 x_3^3 \\ = (x_1^3 + x_1) x_3^3 + (x_1^2 x_2) x_3^2 + (x_1^2 x_2 + x_1 x_2^2) x_3 + (x_1^3 x_2^2) \end{array}$$

The Induction Step

• If this polynomial evaluated at some integer point is zero, then

• either the highest-degree coefficient of x_m in p is zero,... By induction this can occur for at most $(m-1)dM^{m-2}$ values of x_1, \ldots, x_{m-1} . For each such value, p will be zero for at most M values of x_m .

Hence, for at most $(m-1)dM^{m-1}$ values of x_1, \ldots, x_m .

• ... or it is not.

We have a polynomial of degree $\leq d$ in x_m which can have at most d roots for each combination of values of x_1, \ldots, x_{m-1} . So we get at most dM^{m-1} new roots of p.

Adding these, we upper bound the total number of roots of *p*:

$$(m-1)dM^{m-1} + dM^{m-1} = mdM^{m-1}$$

A Monte Carlo Algorithm

- The Lemma allows the following randomized algorithm for deciding if a graph G has a perfect matching.
- We denote by $A^{G}(x_{1},...,x_{m})$ the matrix A^{G} with its *m* variables.
- det(A^G(x₁,...,x_m)) has degree at most one in each of the variables. Choose m random integers i₁,..., i_m between 0 and M = 2m - 1. Compute the determinant det(A^G(i₁,...,i_m)) by Gaussian elimination. If det(A^G(i₁,...,i_m)) ≠ 0 then "G has a perfect matching"; If det(A^G(i₁,...,i_m)) = 0 then "G probably has no perfect matching".
- This is a polynomial Monte Carlo algorithm:
 - If the algorithm finds that a matching exists, its decision is reliable.
 - But if the algorithm answers "probably no matching", then there is a possibility of a false negative.
- If G has a matching, the probability of a false negative answer is

$$P(ext{hitting a } 0) \leq rac{m(2m)^{m-1}}{(2m)^m} = rac{m}{2m} = rac{1}{2}.$$

Amplification

- By taking *M* much larger than *md* we could reduce the probability of a false negative answer as much as desired (at the expense of applying Gaussian elimination to a matrix with larger numbers).
- However, there is a much more widely applicable (and more appealing) way of reducing the chance of false negative answers: Perform many independent experiments.
- We repeat k times the evaluation of the determinant of a symbolic matrix, each time with independently chosen random integer values for the variables in the range $0, \ldots, 2m 1$.
 - If the answer always comes out zero, then our confidence on the outcome that G has no perfect matching is boosted to 1 - (¹/₂)^k.
 - If the answer is different from zero even once, then we know that a perfect matching exists.

The Satisfiability Problem

- Let x_1, \ldots, x_n be Boolean variables.
- A **literal** is one of x_1, \ldots, x_n or $\neg x_1, \ldots, \neg x_n$.
- A clause c is a disjunction $c = \ell_1 \lor \cdots \lor \ell_k$, where ℓ_i is a literal.
- A **CNF formula** is a formula $\varphi = \bigwedge_{i=1}^{m} c_i$, where c_i is a clause, say

$$c_i = \ell_{i1} \vee \cdots \vee \ell_{ik_i}.$$

φ is satisfiable if there exists an assignment τ : {x₁,..., x_n} → {0,1} of Boolean values to its variables, such that τ(φ) = 1.

SAT: Given a CNF formula φ , is φ satisfiable?

Random Walk Algorithm for Satisfiability

• Consider the following randomized algorithm for SAT:

Start with any truth assignment τ ;

Repeat the following r times:

If there is no unsatisfied clause, reply "formula is satisfiable"; else

take any unsatisfied clause (all of its literals are false under τ); Pick any of these literals at random and flip it, updating τ . Reply "formula is probably unsatisfiable".

• We will fix the value of parameter *r* later.

• We call this the random walk algorithm.

Performance of the Algorithm

• If the given expression is unsatisfiable, then our algorithm is "correct":

It concludes that the expression is "probably unsatisfiable".

- But if the expression is satisfiable, we may have a false negative.
- If we allow exponentially many repetitions we will eventually find a satisfying assignment with very high probability.
- If *r* is only allowed to be polynomial in the number of Boolean variables, there are simple satisfiable instances of 3-SAT (3 literals allowed per clause) for which the "random walk algorithm" performs badly.
- When applied to 2-SAT (2 literals allowed per clause) the random walk algorithm performs quite decently.

Performance for 2-SAT

Theorem

Suppose that the random walk algorithm with $r = 2n^2$ is applied to any satisfiable instance of 2-SAT with *n* variables. Then the probability that a satisfying truth assignment will be discovered is at least $\frac{1}{2}$.

• Let $\hat{\tau}$ be a truth assignment that satisfies the given 2-SAT instance. Let t(i) denote the expected number of repetitions of the flipping step until a satisfying truth assignment is found, assuming that our starting truth assignment τ differs from $\hat{\tau}$ in exactly *i* values. We know that t(0) = 0.

Also we need not flip when we are at another satisfying assignment. Otherwise, we must flip at least once.

When we flip, we choose among the two literals of a clause.

At least one of these two literals is true under $\hat{\tau}$.

Thus, when flipping, we have at least $\frac{1}{2}$ chance of moving closer to $\hat{\tau}$.

Writing an Inequality

• For 0 < i < n we can write the inequality:

$$t(i) \leq \frac{1}{2}(t(i-1)+t(i+1))+1,$$

where the added unit stands for the flip just made.

It is an inequality because the situation could be brighter:

- Perhaps the current τ also satisfies the expression;
- Perhaps it differs from $\hat{\tau}$ in both literals, not just the guaranteed one.
- Also $t(n) \le t(n-1) + 1$, since at i = n we can only decrease *i*.

Consider the situation, where the relation holds as an equation.

- This way we give up the occasional chance of stumbling upon another satisfying truth assignment, or a clause where τ and $\hat{\tau}$ differ in both literals.
- It is clear that this can only increase the t(i)'s.

Dealing with an Equation

• We define the function x(i) to obey

•
$$x(0) = 0;$$

•
$$x(n) = x(n-1) + 1;$$

• $x(i) = \frac{1}{2}(x(i-1) + x(i+1)) + 1.$

The x(i)'s are easy to calculate and $x(i) \ge t(i)$ for all i.

We have a "one-dimensional random walk with a reflecting and an absorbing barrier" or a "gambler's ruin against the sheriff".

- If we add all equations on the x(i)'s together, we get x(1) = 2n 1;
- Then solving the x(1)-equation for x(2) we get x(2) = 4n 4;
- Continuing like this $x(i) = 2in i^2$.

As expected, the worst starting *i* is *n*, with $x(n) = n^2$.

We have thus proved that the expected number of repetitions needed to discover a satisfying truth assignment is $t(i) \le x(i) \le x(n) = n^2$.

Bounding the Probability of Failure

- No matter where we start, our expected number of steps is $\leq n^2$.
- The following lemma, with k = 2, completes the proof.

Lemma

If x is a random variable taking nonnegative integer values, then for any k > 0, $P[x > k \cdot E(x)] < \frac{1}{k}.$

• Let p_i be the probability that x = i.

$$E(x) = \sum_{i} ip_i = \sum_{i \leq kE(x)} ip_i + \sum_{i > kE(x)} ip_i > kE(x)P[x > kE(x)].$$

- Hence, the random walk algorithm with $r = 2n^2$ is a polynomial Monte Carlo algorithm for 2-SAT:
 - There there are no false positives;
 - The probability of a false negative is less than $\frac{1}{2}$.

• In closing...

Thank you for your Attention!!