Two Randomized Algorithms

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

Seminar Presentation

Lake Superior State University

The Bipartite Matching Problem

- A bipartite graph $G=(U, V, E)$ consists of
- two sets of vertices $U=\left\{u_{1}, \ldots, u_{n}\right\}$, $V=\left\{v_{1}, \ldots, v_{n}\right\}$;
- A set $E \subseteq U \times V$ of edges.
- A perfect matching in a bipartite graph G is a subset $M \subseteq E$, such that, for any two edges $(u, v),\left(u^{\prime}, v^{\prime}\right) \in M, u \neq u^{\prime}$ and $v \neq v^{\prime}$.

Equivalently, a perfect matching may be viewed as a permutation π of $\{1,2, \ldots, n\}$, such that $\left(u_{i}, v_{\pi(i)}\right) \in E$, for all $i=1, \ldots, n$.

BipartiteMatching: Given a bipartite graph $G=(U, V, E)$, does it have a perfect matching?

Matrices and Determinants

- Given a bipartite graph G, consider the $n \times n$ matrix A^{G} whose (i, j)-th element is a variable $x_{i j}$, if $\left(u_{i}, v_{j}\right) \in E$, and zero otherwise.
- The determinant of A^{G} is defined as

$$
\operatorname{det}\left(A^{G}\right)=\sum_{\pi} \sigma(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G}
$$

- π ranges over all permutations of n elements;
- $\sigma(\pi)$ is 1 if π is composed of an even number of transpositions, and -1 otherwise.
- Note the following:
- The only nonzero terms in this sum are those that correspond to perfect matchings π.
- Since all variables appear once, all of these terms are different monomials, and hence they do not cancel in the end result.
So, G has a perfect matching iff $\operatorname{det}\left(A^{G}\right)$ is not identically zero.

Gaussian Elimination

- The simplest and oldest method to compute determinants is Gaussian elimination.

$$
\left[\begin{array}{rrr}
1 & 3 & 2 \\
1 & 7 & -2 \\
-1 & 3 & -2
\end{array}\right] \underset{\substack{r_{3} \leftarrow r_{3}+r_{1}}}{\substack{r_{2}-r_{1}}}\left[\begin{array}{rrr}
1 & 3 & 2 \\
0 & 4 & -4 \\
0 & 6 & 0
\end{array}\right] \xrightarrow{r_{3} \leftarrow r_{3}-\frac{3}{2} r_{2}}\left[\begin{array}{rrr}
1 & 3 & 2 \\
0 & 4 & -4 \\
0 & 0 & 6
\end{array}\right]
$$

It follows that $\operatorname{det}(A)=1 \cdot 4 \cdot 6=24$.

- For numerical matrices, this algorithm runs in polynomial-time.
- Unfortunately, for symbolic matrices, its worst-case running time becomes exponential.

The Symbolic Identity Problem

- But we are not interested in actually evaluating the symbolic determinant!

We just need to tell whether it is identically zero or not.

- So we can pursue the following idea:
- We substitute arbitrary integers for the variables.
- Then we obtain a numerical matrix, whose determinant we can calculate in polynomial time by Gaussian elimination.
- If this determinant is not zero, then the symbolic determinant cannot be identically zero!
- But the numerical determinant may be zero, although the symbolic one was not.
This happens if we stumble upon one of the roots of the determinant (seen as a polynomial).

How Unlucky Can We Be?

Lemma

Let $p\left(x_{1}, \ldots, x_{m}\right) \not \equiv 0$ be a polynomial in m variables each of degree at most d in it, and let $M>0$ be an integer. Then the number of m-tuples $\left(x_{1}, \ldots, x_{m}\right) \in\{0,1, \ldots, M-1\}^{m}$ such that $p\left(x_{1}, \ldots, x_{m}\right)=0$ is at most $m d M^{m-1}$.

- The proof is by induction on m, the number of variables.
- When $m=1$ the lemma says that no polynomial of degree $\leq d$ can have more than d roots.
Suppose the result is true for $m-1$ variables.
Write p as a polynomial in x_{m}, whose coefficients are polynomials in x_{1}, \ldots, x_{m-1}.
E.g.,

$$
\begin{aligned}
x_{1}^{3} x_{2}^{2} & +x_{1}^{3} x_{3}^{3}+x_{1}^{2} x_{2} x_{3}^{2}+x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{3}^{3} \\
& =\left(x_{1}^{3}+x_{1}\right) x_{3}^{3}+\left(x_{1}^{2} x_{2}\right) x_{3}^{2}+\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right) x_{3}+\left(x_{1}^{3} x_{2}^{2}\right) .
\end{aligned}
$$

The Induction Step

- If this polynomial evaluated at some integer point is zero, then
- either the highest-degree coefficient of x_{m} in p is zero,... By induction this can occur for at most $(m-1) d M^{m-2}$ values of x_{1}, \ldots, x_{m-1}.
For each such value, p will be zero for at most M values of x_{m}. Hence, for at most $(m-1) d M^{m-1}$ values of x_{1}, \ldots, x_{m}.
- ... or it is not.

We have a polynomial of degree $\leq d$ in x_{m} which can have at most d roots for each combination of values of x_{1}, \ldots, x_{m-1}.
So we get at most $d M^{m-1}$ new roots of p.
Adding these, we upper bound the total number of roots of p :

$$
(m-1) d M^{m-1}+d M^{m-1}=m d M^{m-1} .
$$

A Monte Carlo Algorithm

- The Lemma alllows the following randomized algorithm for deciding if a graph G has a perfect matching.
- We denote by $A^{G}\left(x_{1}, \ldots, x_{m}\right)$ the matrix A^{G} with its m variables.
- $\operatorname{det}\left(A^{G}\left(x_{1}, \ldots, x_{m}\right)\right)$ has degree at most one in each of the variables.

Choose m random integers i_{1}, \ldots, i_{m} between 0 and $M=2 m-1$.
Compute the determinant $\operatorname{det}\left(A^{G}\left(i_{1}, \ldots, i_{m}\right)\right)$ by Gaussian elimination.
If $\operatorname{det}\left(A^{G}\left(i_{1}, \ldots, i_{m}\right)\right) \neq 0$ then " G has a perfect matching";
If $\operatorname{det}\left(A^{G}\left(i_{1}, \ldots, i_{m}\right)\right)=0$ then " G probably has no perfect matching".

- This is a polynomial Monte Carlo algorithm:
- If the algorithm finds that a matching exists, its decision is reliable.
- But if the algorithm answers "probably no matching", then there is a possibility of a false negative.
- If G has a matching, the probability of a false negative answer is

$$
P(\text { hitting a } 0) \leq \frac{m(2 m)^{m-1}}{(2 m)^{m}}=\frac{m}{2 m}=\frac{1}{2}
$$

Amplification

- By taking M much larger than $m d$ we could reduce the probability of a false negative answer as much as desired (at the expense of applying Gaussian elimination to a matrix with larger numbers).
- However, there is a much more widely applicable (and more appealing) way of reducing the chance of false negative answers: Perform many independent experiments.
- We repeat k times the evaluation of the determinant of a symbolic matrix, each time with independently chosen random integer values for the variables in the range $0, \ldots, 2 m-1$.
- If the answer always comes out zero, then our confidence on the outcome that G has no perfect matching is boosted to $1-\left(\frac{1}{2}\right)^{k}$.
- If the answer is different from zero even once, then we know that a perfect matching exists.

The Satisfiability Problem

- Let x_{1}, \ldots, x_{n} be Boolean variables.
- A literal is one of x_{1}, \ldots, x_{n} or $\neg x_{1}, \ldots, \neg x_{n}$.
- A clause c is a disjunction $c=\ell_{1} \vee \cdots \vee \ell_{k}$, where ℓ_{i} is a literal.
- A CNF formula is a formula $\varphi=\bigwedge_{i=1}^{m} c_{i}$, where c_{i} is a clause, say

$$
c_{i}=\ell_{i 1} \vee \cdots \vee \ell_{i k_{i}} .
$$

- φ is satisfiable if there exists an assignment $\tau:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ of Boolean values to its variables, such that $\tau(\varphi)=1$.

SAT: Given a CNF formula φ, is φ satisfiable?

Random Walk Algorithm for Satisfiability

- Consider the following randomized algorithm for SAT:

Start with any truth assignment τ;
Repeat the following r times:
If there is no unsatisfied clause, reply "formula is satisfiable"; else
take any unsatisfied clause (all of its literals are false under τ);
Pick any of these literals at random and flip it, updating τ.
Reply "formula is probably unsatisfiable".

- We will fix the value of parameter r later.
- We call this the random walk algorithm.

Performance of the Algorithm

- If the given expression is unsatisfiable, then our algorithm is "correct":

It concludes that the expression is "probably unsatisfiable".

- But if the expression is satisfiable, we may have a false negative.
- If we allow exponentially many repetitions we will eventually find a satisfying assignment with very high probability.
- If r is only allowed to be polynomial in the number of Boolean variables, there are simple satisfiable instances of 3-SAT (3 literals allowed per clause) for which the "random walk algorithm" performs badly.
- When applied to 2-SAT (2 literals allowed per clause) the random walk algorithm performs quite decently.

Performance for 2-SAT

Theorem

Suppose that the random walk algorithm with $r=2 n^{2}$ is applied to any satisfiable instance of 2 -SAT with n variables. Then the probability that a satisfying truth assignment will be discovered is at least $\frac{1}{2}$.

- Let $\hat{\tau}$ be a truth assignment that satisfies the given 2-SAT instance. Let $t(i)$ denote the expected number of repetitions of the flipping step until a satisfying truth assignment is found, assuming that our starting truth assignment τ differs from $\hat{\tau}$ in exactly i values.
We know that $t(0)=0$.
Also we need not flip when we are at another satisfying assignment.
Otherwise, we must flip at least once.
When we flip, we choose among the two literals of a clause.
At least one of these two literals is true under $\hat{\tau}$.
Thus, when flipping, we have at least $\frac{1}{2}$ chance of moving closer to $\hat{\tau}$.

Writing an Inequality

- For $0<i<n$ we can write the inequality:

$$
t(i) \leq \frac{1}{2}(t(i-1)+t(i+1))+1
$$

where the added unit stands for the flip just made.
It is an inequality because the situation could be brighter:

- Perhaps the current τ also satisfies the expression;
- Perhaps it differs from $\hat{\tau}$ in both literals, not just the guaranteed one.
- Also $t(n) \leq t(n-1)+1$, since at $i=n$ we can only decrease i.

Consider the situation, where the relation holds as an equation.

- This way we give up the occasional chance of stumbling upon another satisfying truth assignment, or a clause where τ and $\hat{\tau}$ differ in both literals.
- It is clear that this can only increase the $t(i)$'s.

Dealing with an Equation

- We define the function $x(i)$ to obey
- $x(0)=0$;
- $x(n)=x(n-1)+1$;
- $x(i)=\frac{1}{2}(x(i-1)+x(i+1))+1$.

The $x(i)$'s are easy to calculate and $x(i) \geq t(i)$ for all i.
We have a "one-dimensional random walk with a reflecting and an absorbing barrier" or a "gambler's ruin against the sheriff'.

- If we add all equations on the $x(i)$'s together, we get $x(1)=2 n-1$;
- Then solving the $x(1)$-equation for $x(2)$ we get $x(2)=4 n-4$;
- Continuing like this $x(i)=2 i n-i^{2}$.

As expected, the worst starting i is n, with $x(n)=n^{2}$.
We have thus proved that the expected number of repetitions needed to discover a satisfying truth assignment is $t(i) \leq x(i) \leq x(n)=n^{2}$.

Bounding the Probability of Failure

- No matter where we start, our expected number of steps is $\leq n^{2}$.
- The following lemma, with $k=2$, completes the proof.

Lemma

If x is a random variable taking nonnegative integer values, then for any $k>0$,

$$
P[x>k \cdot E(x)]<\frac{1}{k}
$$

- Let p_{i} be the probability that $x=i$.

$$
E(x)=\sum_{i} i p_{i}=\sum_{i \leq k E(x)} i p_{i}+\sum_{i>k E(x)} i p_{i}>k E(x) \mathrm{P}[x>k E(x)] .
$$

- Hence, the random walk algorithm with $r=2 n^{2}$ is a polynomial Monte Carlo algorithm for 2-SAT:
- There there are no false positives;
- The probability of a false negative is less than $\frac{1}{2}$.

Thank you!

- In closing...

Thank you for your Attention!!

