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Black Box Problems

A black box problem formalizes situations in which an unknown
function on a known domain, belonging to a known class of functions
must be optimized via a series of queries using specific inputs.

The data available consist of:

A problem size n;
A search space Sn;
A class Fn of functions f : Sn → R.

The goal is, without knowledge of the specific f ∈ Fn under
consideration, to find

x = argmax
x∈Sn

{f (x)}.
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Example: Traveling Salesperson Version

In the traveling salesperson, a number of cities is given, together
with intercity distances, and we are supposed to find a tour of the
cities that minimizes the total distance traveled.

A black box version of this problem is formalized by giving:

The number n of the cities [n] = {1, . . . , n} to be visited;
The collection Sn of all permutations π : [n] → [n], that represent all
possible tours;
The collection Fn : Sn → R of functions fD : Sn → R, where for a
(hidden) distance matrix D, fD assigns to a permutation π the length
of the tour represented by π according to D.

The goal is to choose π that optimizes fD , without access to the
matrix D (which is critical in knowing the “structure” of fD , i.e., how
fD is computed).
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Randomized Search Heuristics

Consider a black box problem B = {Fn : Sn → R : n ∈ N}.

A randomized search heuristic for B proceeds as follows:
In Step 1:

Selects a probability distribution p1 on Sn;
Selects x1 ∈ Sn according to p1;
Computes f (x1);

In Step t > 1, assuming knowledge of (x1, f (x1)), . . . , (xt−1, f (xt−1)):

Selects a new probability distribution pt on Sn (depending on prior
knowledge);
Selects xt according to pt ;
Computes f (xt);

At some t, decides (according to some criterion) to stop and outputs
the xi with the optimum f (xi ).

In specific applications (e.g., local search, evolutionary or genetic
algorithms) the t-th step requires only knowledge of (xt−1, f (xt−1)).

In all cases, the value xi with best f (xi ) must be stored for output.
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Expected Optimization Time

To obtain an accurate estimate of performance, we would have to
relate the expected runtime with the probability of success.

But to simplify analysis we make the following compromises:

We assume that the randomized search heuristics never halts.
We ignore the number of steps needed to:

Compute pt ;
Select xt .

As a result, we use only the number of calls to the black box in order
to compute the expected optimization time, i.e.,

the expected time (number of steps) until an optimal solution is given
as a query to the black box.
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Black Box Complexity

Given a black box problem B = {Fn : Sn → R : n ∈ N}, its black
box complexity is the minimal (over all possible randomized search
heuristics) worst-case (over all possible functions) expected
optimization time.

To compare black box complexity with ordinary complexity, we note
two conflicting trends:

The fact that only Fn is known, but not the specific f to be optimized,
makes black box complexity more challenging;
The fact that we count only the number of calls to the black box (and
do not include other computational steps) makes black box complexity
easier.
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Example: Pseudo-Boolean Polynomials of Degree 2

A pseudo-Boolean polynomial of degree 2 is a function
f : {0, 1}n → R that has the form

f (x1, . . . , xn) = w0 +
∑

1≤i≤n

wixi +
∑

1≤i<j≤n

wijxixj ,

where w0, wi and wij are real constants.

In this context, we use the following notation:

e0 is the vector consisting of all 0’s;
ei is the vector consisting of only one 1 in position i and all other
components 0;
eij is the vector with exactly two 1’s in positions i and j and all other
components 0.
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Example: Randomized Search Heuristics

Consider the black box problem B = {Fn : {0, 1}n → R : n ∈ N},
where Fn is the class of all pseudo-Boolean polynomials of degree 2.

We employ the following randomized search heuristic (which is
deterministic in this case):

Compute w0 = f (e0);
Compute wi = f (ei )− w0;
Compute wij = f (eij)− w0 − wi − wj ;
(By employing exponentially many steps which, however, do not count
in black box time, optimize f (x) = w0 +

∑

i wixi +
∑

i ,j wijxixj ;)
Compute f (xopt).

The algorithm uses

1 + n +

(

n

2

)

+ 1 = O
(

n2
)

black box calls, but it is “undesirable” (due to the exponential cost).
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Finite Problems

Our final goal is to present and apply Yao’s Minimax Principle.

To this end, we restrict black box problems to those where
components are finite:

The domain of functions Sn is finite.
The range of each function is finite, say {0, 1, . . .N}.
Then the set Fn of all functions f : Sn → {0, 1 . . . ,N} is also finite.
The number of all different queries that can be made to the black box
f (xt), f ∈ Fn and xt ∈ Sn, is also finite.
In conclusion, the number of all possible deterministic search heuristics
is finite.
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Yao’s Game

Even though in reality there is only one person (the designer of the
randomized search heuristic) involved,...

...Yao (1977) recast the framework as a two-person, zero-sum game:

Alice, the designer of the randomized search heuristic A;
Bob, an opponent (adversary) choosing f ∈ Fn.

For fixed A and f , T (f ,A) denotes the expected number of black box
calls needed before a call with an optimal search point for f .

Alice wants to minimize T (f ,A) so as to design the best heuristic;
Black box complexity being worst-case with respect to f , Bob wants to
maximize T (f ,A) by choosing the worst f ∈ Fn.
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The Payoff Matrix

The payoff matrix has a row for each function f ∈ Fn and a column
for each deterministic search heuristic A.

The (f ,A)-entry of the matrix is T (f ,A).

In regards to the game, for a given choice of A and f , Alice pays Bob
T (f ,A).

A and f are chosen independently.

Both Alice and Bob are allowed to use randomized strategies.
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Notation for Randomized Strategies

We let Q be the set of all probability distributions on the set A of
deterministic search heuristics.

For a chosen q ∈ Q, and accompanying choice of Aq according to q,
Alice’s expected cost for fixed f is T (f ,Aq).

So, for q ∈ Q, Alice’s worst-case cost is

max
f

T (f ,Aq).

We let P be the set of all probability distributions on the set Fn of
functions.

For a chosen p ∈ P , and accompanying choice of fp according to p,
Bob’s expected gain for fixed A is T (fp,A).

So, for p ∈ P , Alice’s best deterministic search heuristic is

min
A

T (fp,A).
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The Two Player Perspectives

We have:
T (fp ,Aq) =

∑

f ∈Fn
p(f )T (f ,Aq)

≤ maxf T (f ,Aq).

Alice is seeking q∗, such that

maxf T (f ,Aq∗) = minq maxf T (f ,Aq)
= minq maxp T (fp,Aq).

We also have:

T (fp,Aq) =
∑

A q(A)T (fp,A)
≥ minA T (fp,A).

Bob is seeking p∗, such that

minA T (fp∗ ,A) = maxp minA T (fp,A)
= maxp minq T (fp ,Aq).
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Von Neumann’s MiniMax and Yao’s Minimax Theorems

Von Neumann’s Minimax Theorem (Game Theory) asserts that

max
p

min
q

T (fp ,Aq) = min
q

max
p

T (fp,Aq).

The common value v∗ is called the value of the game.

In particular, we have

vBob := max
p

min
A

T (fp ,A) ≤ min
q

max
f

T (f ,Aq) =: vAlice.

Yao’s Minimax Theorem

Let Fn be a finite set of functions on a finite search space Sn, and let A be
a finite set of deterministic algorithms on the problem class Fn. For every
probability distribution p on Fn and every probability distribution q on A,

min
A∈A

T (fp ,A) ≤ max
f ∈Fn

T (f ,Aq).
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Significance of Yao’s Minimax Theorems

According to Yao’s Minimax Theorem

min
A∈A

T (fp ,A) ≤ max
f ∈Fn

T (f ,Aq).

The expected running time of an optimal deterministic algorithm with
respect to an arbitrary distribution on the problem instances is a lower
bound for the expected runtime of an optimal randomized algorithm
with respect to the most difficult problem instance.

So the benefit is that:

We get lower bounds for randomized algorithms by proving lower
bounds for deterministic algorithms.
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Deterministic Search Heuristics as Search Trees

Let A be a deterministic search heuristic.

The tree corresponding to A is constructed as follows:

At the root is the first query to the black box.
Edges out of the root represent possible results to the query.
Nodes at the second level represent the second query made, depending
on the specific answer to the first query.
...

Given a specific f ∈ Fn, there exists a unique path starting at the root
describing the behavior of the heuristic on f .

The number of nodes on this path until the first node representing a
query to an optimal point for f is equal to the running time of the
heuristic on input f .
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Example: Needle in a Haystack

We deal with the following data:

The search space Sn = {0, 1}n;
The collection of functions

Fn = {Na : {0, 1}
n → {0, 1} : a ∈ {0, 1}n},

where

Na(x) =

{

1, if x = a

0, if x 6= a
, a ∈ {0, 1}n.

Theorem

The black box complexity of Fn is 2n−1 + 1
2 .
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Example: The Upper Bound

Consider the following randomized search heuristic:
Repeat

Pick (a new) x ∈ {0, 1}n at random;
Compute f (x);

Expected optimization time:

For a fixed a, since all orderings of the queries are equally likely, the
probability that Na will be queried at a at the i -th step is 1

2n .

It follows that the expected optimization time is

1

2n
· 1 +

1

2n
· 2 + · · · +

1

2n
· 2n

=
1

2n
(1 + 2 + · · ·+ 2n)

=
1

2n
2n(2n + 1)

2
= 2n−1 +

1

2
.
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Example: The Lower Bound

We use Yao’s Minimax Theorem.

We must evaluate, for a given deterministic A, minA T (fp,A) for
some arbitrary distribution p on Fn.

Choose as p the uniform distribution on Fn.
There exists an f ∈ Fn for which A answers
1 at the 2n-th step after having answered
0’s at all previous steps.
On this path every x ∈ {0, 1}n is queried.
And at each level only one query is asked.
The expected optimization time is at least

∑

f

p(f )T (f ,A) =
1

2n
(1 + 2 + · · ·+ 2n) = 2n−1 +

1

2
.
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Thank you!

In closing...

Thank you for your Attention!!

George Voutsadakis (LSSU) Black Box Complexity Sault Sainte Marie, 2022 20 / 20


