Black Box Complexity

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

Seminar Presentation

Lake Superior State University

Black Box Problems

- A black box problem formalizes situations in which an unknown function on a known domain, belonging to a known class of functions must be optimized via a series of queries using specific inputs.
- The data available consist of:
- A problem size n;
- A search space S_{n};
- A class F_{n} of functions $f: S_{n} \rightarrow \mathbb{R}$.
- The goal is, without knowledge of the specific $f \in F_{n}$ under consideration, to find

$$
x=\underset{x \in S_{n}}{\operatorname{argmax}}\{f(x)\}
$$

Example: Traveling Salesperson Version

- In the traveling salesperson, a number of cities is given, together with intercity distances, and we are supposed to find a tour of the cities that minimizes the total distance traveled.
- A black box version of this problem is formalized by giving:
- The number n of the cities $[n]=\{1, \ldots, n\}$ to be visited;
- The collection S_{n} of all permutations $\pi:[n] \rightarrow[n]$, that represent all possible tours;
- The collection $F_{n}: S_{n} \rightarrow \mathbb{R}$ of functions $f_{D}: S_{n} \rightarrow \mathbb{R}$, where for a (hidden) distance matrix D, f_{D} assigns to a permutation π the length of the tour represented by π according to D.
- The goal is to choose π that optimizes f_{D}, without access to the matrix D (which is critical in knowing the "structure" of f_{D}, i.e., how f_{D} is computed).

Randomized Search Heuristics

- Consider a black box problem $B=\left\{F_{n}: S_{n} \rightarrow \mathbb{R}: n \in \mathbb{N}\right\}$.
- A randomized search heuristic for B proceeds as follows:
- In Step 1:
- Selects a probability distribution p_{1} on S_{n};
- Selects $x_{1} \in S_{n}$ according to p_{1};
- Computes $f\left(x_{1}\right)$;
- In Step $t>1$, assuming knowledge of $\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{t-1}, f\left(x_{t-1}\right)\right)$:
- Selects a new probability distribution p_{t} on S_{n} (depending on prior knowledge);
- Selects x_{t} according to p_{t};
- Computes $f\left(x_{t}\right)$;
- At some t, decides (according to some criterion) to stop and outputs the x_{i} with the optimum $f\left(x_{i}\right)$.
- In specific applications (e.g., local search, evolutionary or genetic algorithms) the t-th step requires only knowledge of $\left(x_{t-1}, f\left(x_{t-1}\right)\right)$.
- In all cases, the value x_{i} with best $f\left(x_{i}\right)$ must be stored for output.

Expected Optimization Time

- To obtain an accurate estimate of performance, we would have to relate the expected runtime with the probability of success.
- But to simplify analysis we make the following compromises:
- We assume that the randomized search heuristics never halts.
- We ignore the number of steps needed to:
- Compute p_{t};
- Select x_{t}.
- As a result, we use only the number of calls to the black box in order to compute the expected optimization time, i.e., the expected time (number of steps) until an optimal solution is given as a query to the black box.

Black Box Complexity

- Given a black box problem $B=\left\{F_{n}: S_{n} \rightarrow \mathbb{R}: n \in \mathbb{N}\right\}$, its black box complexity is the minimal (over all possible randomized search heuristics) worst-case (over all possible functions) expected optimization time.
- To compare black box complexity with ordinary complexity, we note two conflicting trends:
- The fact that only F_{n} is known, but not the specific f to be optimized, makes black box complexity more challenging;
- The fact that we count only the number of calls to the black box (and do not include other computational steps) makes black box complexity easier.

Example: Pseudo-Boolean Polynomials of Degree 2

- A pseudo-Boolean polynomial of degree $\mathbf{2}$ is a function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ that has the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=w_{0}+\sum_{1 \leq i \leq n} w_{i} x_{i}+\sum_{1 \leq i<j \leq n} w_{i j} x_{i} x_{j}
$$

where w_{0}, w_{i} and $w_{i j}$ are real constants.

- In this context, we use the following notation:
- e_{0} is the vector consisting of all 0 's;
- e_{i} is the vector consisting of only one 1 in position i and all other components 0 ;
- $e_{i j}$ is the vector with exactly two 1 's in positions i and j and all other components 0 .

Example: Randomized Search Heuristics

- Consider the black box problem $B=\left\{F_{n}:\{0,1\}^{n} \rightarrow \mathbb{R}: n \in \mathbb{N}\right\}$, where F_{n} is the class of all pseudo-Boolean polynomials of degree 2 .
- We employ the following randomized search heuristic (which is deterministic in this case):
- Compute $w_{0}=f\left(e_{0}\right)$;
- Compute $w_{i}=f\left(e_{i}\right)-w_{0}$;
- Compute $w_{i j}=f\left(e_{i j}\right)-w_{0}-w_{i}-w_{j}$;
(By employing exponentially many steps which, however, do not count in black box time, optimize $f(x)=w_{0}+\sum_{i} w_{i} x_{i}+\sum_{i, j} w_{i j} x_{i} x_{j}$;)
- Compute $f\left(x_{\text {opt }}\right)$.
- The algorithm uses

$$
1+n+\binom{n}{2}+1=\mathrm{O}\left(n^{2}\right)
$$

black box calls, but it is "undesirable" (due to the exponential cost).

Finite Problems

- Our final goal is to present and apply Yao's Minimax Principle.
- To this end, we restrict black box problems to those where components are finite:
- The domain of functions S_{n} is finite.
- The range of each function is finite, say $\{0,1, \ldots N\}$.
- Then the set F_{n} of all functions $f: S_{n} \rightarrow\{0,1 \ldots, N\}$ is also finite.
- The number of all different queries that can be made to the black box $f\left(x_{t}\right), f \in F_{n}$ and $x_{t} \in S_{n}$, is also finite.
- In conclusion, the number of all possible deterministic search heuristics is finite.

Yao's Game

- Even though in reality there is only one person (the designer of the randomized search heuristic) involved,...
- ...Yao (1977) recast the framework as a two-person, zero-sum game:
- Alice, the designer of the randomized search heuristic A;
- Bob, an opponent (adversary) choosing $f \in F_{n}$.
- For fixed A and $f, T(f, A)$ denotes the expected number of black box calls needed before a call with an optimal search point for f.
- Alice wants to minimize $T(f, A)$ so as to design the best heuristic;
- Black box complexity being worst-case with respect to f, Bob wants to maximize $T(f, A)$ by choosing the worst $f \in F_{n}$.

The Payoff Matrix

- The payoff matrix has a row for each function $f \in F_{n}$ and a column for each deterministic search heuristic A.
- The (f, A)-entry of the matrix is $T(f, A)$.
- In regards to the game, for a given choice of A and f, Alice pays Bob $T(f, A)$.
- A and f are chosen independently.
- Both Alice and Bob are allowed to use randomized strategies.

Notation for Randomized Strategies

- We let Q be the set of all probability distributions on the set A of deterministic search heuristics.
- For a chosen $q \in Q$, and accompanying choice of A_{q} according to q, Alice's expected cost for fixed f is $T\left(f, A_{q}\right)$.
- So, for $q \in Q$, Alice's worst-case cost is

$$
\max _{f} T\left(f, A_{q}\right) .
$$

- We let P be the set of all probability distributions on the set F_{n} of functions.
- For a chosen $p \in P$, and accompanying choice of f_{p} according to p, Bob's expected gain for fixed A is $T\left(f_{p}, A\right)$.
- So, for $p \in P$, Alice's best deterministic search heuristic is

$$
\min _{A} T\left(f_{p}, A\right)
$$

The Two Player Perspectives

- We have:

$$
\begin{aligned}
T\left(f_{p}, A_{q}\right) & =\sum_{f \in F_{n}} p(f) T\left(f, A_{q}\right) \\
& \leq \max _{f} T\left(f, A_{q}\right) .
\end{aligned}
$$

- Alice is seeking q^{*}, such that

$$
\begin{aligned}
\max _{f} T\left(f, A_{q^{*}}\right) & =\min _{q} \max _{f} T\left(f, A_{q}\right) \\
& =\min _{q} \max _{p} T\left(f_{p}, A_{q}\right) .
\end{aligned}
$$

- We also have:

$$
\begin{aligned}
T\left(f_{p}, A_{q}\right) & =\sum_{A} q(A) T\left(f_{p}, A\right) \\
& \geq \min _{A} T\left(f_{p}, A\right) .
\end{aligned}
$$

- Bob is seeking p^{*}, such that

$$
\begin{aligned}
\min _{A} T\left(f_{p^{*}}, A\right) & =\max _{p} \min _{A} T\left(f_{p}, A\right) \\
& =\max _{p} \min _{q} T\left(f_{p}, A_{q}\right) .
\end{aligned}
$$

Von Neumann's MiniMax and Yao's Minimax Theorems

- Von Neumann's Minimax Theorem (Game Theory) asserts that

$$
\max _{p} \min _{q} T\left(f_{p}, A_{q}\right)=\min _{q} \max _{p} T\left(f_{p}, A_{q}\right) .
$$

The common value v^{*} is called the value of the game.

- In particular, we have

$$
v_{\text {Bob }}:=\max _{p} \min _{A} T\left(f_{p}, A\right) \leq \min _{q} \max _{f} T\left(f, A_{q}\right)=: v_{\text {Alice }}
$$

Yao's Minimax Theorem

Let F_{n} be a finite set of functions on a finite search space S_{n}, and let \mathcal{A} be a finite set of deterministic algorithms on the problem class F_{n}. For every probability distribution p on F_{n} and every probability distribution q on \mathcal{A},

$$
\min _{A \in \mathcal{A}} T\left(f_{p}, A\right) \leq \max _{f \in F_{n}} T\left(f, A_{q}\right) .
$$

Significance of Yao's Minimax Theorems

- According to Yao's Minimax Theorem

$$
\min _{A \in \mathcal{A}} T\left(f_{p}, A\right) \leq \max _{f \in F_{n}} T\left(f, A_{q}\right) .
$$

- The expected running time of an optimal deterministic algorithm with respect to an arbitrary distribution on the problem instances is a lower bound for the expected runtime of an optimal randomized algorithm with respect to the most difficult problem instance.
- So the benefit is that:

We get lower bounds for randomized algorithms by proving lower bounds for deterministic algorithms.

Deterministic Search Heuristics as Search Trees

- Let A be a deterministic search heuristic.
- The tree corresponding to A is constructed as follows:
- At the root is the first query to the black box.
- Edges out of the root represent possible results to the query.
- Nodes at the second level represent the second query made, depending on the specific answer to the first query.
- Given a specific $f \in F_{n}$, there exists a unique path starting at the root describing the behavior of the heuristic on f.
- The number of nodes on this path until the first node representing a query to an optimal point for f is equal to the running time of the heuristic on input f.

Example: Needle in a Haystack

- We deal with the following data:
- The search space $S_{n}=\{0,1\}^{n}$;
- The collection of functions

$$
F_{n}=\left\{N_{a}:\{0,1\}^{n} \rightarrow\{0,1\}: a \in\{0,1\}^{n}\right\},
$$

where

$$
N_{a}(x)=\left\{\begin{array}{ll}
1, & \text { if } x=a \\
0, & \text { if } x \neq a
\end{array}, \quad a \in\{0,1\}^{n} .\right.
$$

Theorem

The black box complexity of F_{n} is $2^{n-1}+\frac{1}{2}$.

Example: The Upper Bound

- Consider the following randomized search heuristic:

Repeat
Pick (a new) $x \in\{0,1\}^{n}$ at random;
Compute $f(x)$;
Expected optimization time:
For a fixed a, since all orderings of the queries are equally likely, the probability that N_{a} will be queried at a at the i-th step is $\frac{1}{2^{n}}$.
It follows that the expected optimization time is

$$
\begin{aligned}
\frac{1}{2^{n}} \cdot 1+ & \frac{1}{2^{n}} \cdot 2+\cdots+\frac{1}{2^{n}} \cdot 2^{n} \\
& =\frac{1}{2^{n}}\left(1+2+\cdots+2^{n}\right) \\
& =\frac{1}{2^{n}} \frac{2^{n}\left(2^{n}+1\right)}{2}=2^{n-1}+\frac{1}{2}
\end{aligned}
$$

Example: The Lower Bound

- We use Yao's Minimax Theorem.

We must evaluate, for a given deterministic $A, \min _{A} T\left(f_{p}, A\right)$ for some arbitrary distribution p on F_{n}.

Choose as p the uniform distribution on F_{n}. There exists an $f \in F_{n}$ for which A answers 1 at the 2^{n}-th step after having answered 0 's at all previous steps.
On this path every $x \in\{0,1\}^{n}$ is queried. And at each level only one query is asked.
The expected optimization time is at least

$$
\sum_{f} p(f) T(f, A)=\frac{1}{2^{n}}\left(1+2+\cdots+2^{n}\right)=2^{n-1}+\frac{1}{2}
$$

Thank you!

- In closing...

Thank you for your Attention!!

