Communication Complexity

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

Seminar Presentation
Lake Superior State University

George Voutsadakis (LSSU)

Communication Complexity

Sault Sainte Marie, 2022 1 / 14

- The game involves two players, Alice and Bob.
- They both know a function

 $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}.$

- Only Alice knows the first half $x \in \{0,1\}^n$ of the input;
- Only Bob knows the second half $y \in \{0,1\}^n$ of the input.
- Their goal is to compute the value f(x, y).
- They have agreed to operate (and communicate) according to a specified protocol Π to compute f(x, y).

• A *t*-round protocol Π is a sequence of *t* functions

$$P_1,\ldots,P_t: \{0,1\}^* \to \{0,1\}^*.$$

- An execution of ∏ on inputs x, y ∈ {0,1}ⁿ goes as follows: Alice computes p₁ = P₁(x) and sends p₁ to Bob; Bob computes p₂ = P₂(y, p₁) and sends p₂ to Alice;
- odd *i* Alice computes $p_i = P_i(x, p_1, ..., p_{i-1})$ and sends p_i to Bob; even *i* Bob computes $p_i = P_i(y, p_1, ..., p_{i-1})$ and sends p_i to Alice;
- □ I is a protocol for f if, for all x, y ∈ {0,1}ⁿ, p_t = f(x, y), i.e., the last bit communicated is the correct value of f, for all inputs (x, y).

Communication Complexity

- Communication complexity diverges dramatically from ordinary notions of complexity.
 - It ignores the complexities of computing the *P_i*'s;
 - It only focuses on the number of bits that are communicated.
- The communication complexity of a protocol Π is the maximum number of bits communicated over all inputs:

$$C(\Pi) = \max_{x,y \in \{0,1\}^n} \{ |p_1| + |p_2| + \dots + |p_t| \}.$$

The communication complexity of a function *f* is the minimum communication complexity over all protocols Π for *f*:

$$C(f) = \min_{\Pi \text{ for } f} C(\Pi).$$

• For every
$$f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\},$$

 $C(f) \leq n+1.$

• Here is a protocol Π^* :

•
$$p_1 = x;$$

• $p_2 = f(x, y).$
We have $C(\Pi^*) = n + 1.$
So we get

$$C(f) = \min_{\Pi \text{ for } f} C(\Pi) \leq n+1.$$

Suppose

$$f(x,y) = \bigoplus_{i=1}^n x_i \oplus \bigoplus_{i=1}^n y_i.$$

If Π is a protocol for f, then C(Π) ≥ 2.
Follows from the fact that f depends nontrivially on both x and y.
Now consider the following protocol Π*:

•
$$p_1 = \bigoplus_{i=1}^n x_i$$
;
• $p_2 = p_1 \oplus \bigoplus_{i=1}^n y_i$.
We have $C(\Pi^*) = 2$.
It follows that $C(f) = \min_{\Pi \text{ for } f} C(\Pi) \le 2$.

• Therefore, C(f) = 2.

• We consider the function of 10 bits

 $f(a_0, a_1, a_2, a_3, b_0, b_1, b_2, b_3, s_0, s_1) = 1$ iff $a_{s_0+2s_1} = b_{s_0+2s_1}$.

- Alice knows *a*₀, *a*₁, *a*₂, *a*₃, *s*₀;
- Bob knows *b*₀, *b*₁, *b*₂, *b*₃, *s*₁.

• A protocol Π for f is as follows:

•
$$p_1 = s_0;$$

• $p_2 = \langle s_1, b_{s_0+2s_1} \rangle;$
• $p_3 = \begin{cases} 1, & \text{if } a_{s_0+2s_1} = b_{s_0+2s_1} \\ 0, & \text{otherwise} \end{cases}$

• We have $C(\Pi) = 4$.

Fooling Sets

The Fooling Sets Lemma

Let $f : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ be a function and Π a protocol for f. Suppose that for $x, y \in \{0,1\}^n$, with $x \neq y$, $\Pi(x,x) = \Pi(y,y)$. Then,

$$f(x,x) = f(x,y) = f(y,x) = f(y,y).$$

By hypothesis, f(x, x) = f(y, y).
By symmetry, it suffices to show that f(x, x) = f(x, y).
We show by induction on i that p_i (on (x, x)) and q_i (on (x, y)) agree.

•
$$p_1 = P_1(x) = q_1;$$

- Assume $p_j = q_j$, for all j < i.
- Then, if *i* is odd, the conclusion is obvious.

If *i* is even, $p_i = P_i(x, p_1, \dots, p_{i-1}) = P_i(y, q_1, \dots, q_{i-1}) = q_i$, where the middle equation follows from $\Pi(x, x) = \Pi(y, y)$.

For i = t, we get the conclusion.

• Consider the function $\mathrm{EQ}: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, defined by

$$EQ(x,y) = \begin{cases} 1, & \text{if } x = y \\ 0, & \text{otherwise} \end{cases}$$

Theorem

 $C(EQ) \ge n.$

 Suppose there exists a protocol Π for EQ, such that C(Π) ≤ n − 1. Then, there exist at most 2ⁿ⁻¹ distinct communication patterns. But there are at least 2ⁿ distinct inputs of the form (x, x). Hence, there exist x, y ∈ {0,1}ⁿ, x ≠ y, such that Π(x,x) = Π(y,y). By the Fooling Sets Lemma, EQ(x,x) = EQ(x,y), a contradiction.

Matrix of f, Rectangles and Monochromatic Tilings

- Let $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ be a function.
- The matrix of f, M(f), is a $2^n \times 2^n$ matrix, such that, for all $x, y \in \{0,1\}^n$, $M_{x,y} = f(x, y)$.
- A (combinatorial) rectangle in *M* is a submatrix of *M* of the form *A* × *B*, for some *A*, *B* ⊆ {0,1}ⁿ.
- The rectangle A × B is monochromatic if M_{x,y} is constant, for all x ∈ A, y ∈ B.
- A monochromatic tiling of M(f) is a partition of M(f) into disjoint monochromatic rectangles.
- χ(f) is the minimum number of rectangles in any monochromatic tiling of M(f).

Theorem

For any $f : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}, \ C(f) \ge \log_2 \chi(f).$

• Suppose C(f) = k. It suffices to show that M(f) has a monochromatic tiling with at most 2^k rectangles.

Suppose, in the first round, Alice sends a bit.

M(f) partitions into $A_0 \times \{0,1\}^n$ and $A_1 \times \{0,1\}^n$, where A_0, A_1 are the subsets of the input for which the bit 0 or 1, respectively, is sent.

If, in the next round, Bob sends a bit, then each of $A_0 \times \{0,1\}^n$ and $A_1 \times \{0,1\}^n$ is partitioned into two smaller rectangles similarly.

When the protocol stops (with 2^k rectangles in the partition), all pairs (x, y) in the same rectangle are provided with the same answer. So the resulting partition is in monochromatic rectangles.

- The **rank** of a square matrix *M*, rank(*M*), is the size of the largest subset of rows which are linearly independent.
- A characterization asserts that the rank of a matrix M is the minimum value of ℓ , such that M can be expressed as $M = \sum_{i=1}^{\ell} B_i$, where the B_i 's are matrices of rank 1.

Theorem

For any
$$f: \{0,1\}^n imes \{0,1\}^n o \{0,1\}, \ \chi(f) \geq \mathsf{rank}(M(f)).$$

- Every monochromatic rectangle can be viewed as a $2^n \times 2^n$ matrix of rank at most 1.
- Returning to EQ, $rank(M(EQ)) = 2^{n}$.
 - So $C(EQ) \ge \log_2 \chi(EQ) \ge n$.

So we get an alternative proof of the lower bound.

The Discrepancy Method

- Consider M(f) to be a ± 1 instead of a 0/1-matrix.
- The discrepancy of a rectangle $A \times B$ in a $2^n \times 2^n$ matrix M is

$$\mathsf{Disc}_{M}(A \times B) = \frac{1}{2^{2n}} \left| \sum_{x \in A, y \in B} M_{x, y} \right|$$

• The **discrepancy of the matrix** M(f), Disc(f), is the maximum discrepancy among all rectangles.

Lemma

For any
$$f: \{0,1\}^n imes \{0,1\}^n o \{0,1\}$$
, $\chi(f) \geq rac{1}{\operatorname{Disc}(f)}$.

• Suppose $\chi(f) = k$.

Then, there exists a monochromatic rectangle with $\geq \frac{2^{2n}}{k}$ entries. Its discrepancy is at least $\frac{1}{k}$. Putting everything together, $\frac{1}{\text{Disc}(f)} \leq k = \chi(f)$.

• In closing...

Thank you for your Attention!!

George Voutsadakis (LSSU)

Communication Complexity

Sault Sainte Marie, 2022 14 / 14