Communication Complexity

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

Seminar Presentation

Lake Superior State University

The Communication Game

- The game involves two players, Alice and Bob.
- They both know a function

$$
f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}
$$

- Only Alice knows the first half $x \in\{0,1\}^{n}$ of the input;
- Only Bob knows the second half $y \in\{0,1\}^{n}$ of the input.
- Their goal is to compute the value $f(x, y)$.
- They have agreed to operate (and communicate) according to a specified protocol Π to compute $f(x, y)$.

Communication Protocol

- A t-round protocol Π is a sequence of t functions

$$
P_{1}, \ldots, P_{t}:\{0,1\}^{*} \rightarrow\{0,1\}^{*} .
$$

- An execution of Π on inputs $x, y \in\{0,1\}^{n}$ goes as follows: Alice computes $p_{1}=P_{1}(x)$ and sends p_{1} to Bob; Bob computes $p_{2}=P_{2}\left(y, p_{1}\right)$ and sends p_{2} to Alice;
odd i Alice computes $p_{i}=P_{i}\left(x, p_{1}, \ldots, p_{i-1}\right)$ and sends p_{i} to Bob;
even i Bob computes $p_{i}=P_{i}\left(y, p_{1}, \ldots, p_{i-1}\right)$ and sends p_{i} to Alice;
- Π is a protocol for f if, for all $x, y \in\{0,1\}^{n}, p_{t}=f(x, y)$, i.e., the last bit communicated is the correct value of f, for all inputs (x, y).

Communication Complexity

- Communication complexity diverges dramatically from ordinary notions of complexity.
- It ignores the complexities of computing the P_{i} 's;
- It only focuses on the number of bits that are communicated.
- The communication complexity of a protocol Π is the maximum number of bits communicated over all inputs:

$$
C(\Pi)=\max _{x, y \in\{0,1\}^{n}}\left\{\left|p_{1}\right|+\left|p_{2}\right|+\cdots+\left|p_{t}\right|\right\}
$$

- The communication complexity of a function f is the minimum communication complexity over all protocols Π for f :

$$
C(f)=\min _{\Pi \text { for } f} C(\Pi)
$$

A Trivial Upper Bound

- For every $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$,

$$
C(f) \leq n+1 .
$$

- Here is a protocol Π^{*} :
- $p_{1}=x$;
- $p_{2}=f(x, y)$.

We have $C\left(\Pi^{*}\right)=n+1$.
So we get

$$
C(f)=\min _{\Pi \text { for } f} C(\Pi) \leq n+1
$$

The Parity Function

- Suppose

$$
f(x, y)=\bigoplus_{i=1}^{n} x_{i} \oplus \bigoplus_{i=1}^{n} y_{i}
$$

- If Π is a protocol for f, then $C(\Pi) \geq 2$.

Follows from the fact that f depends nontrivially on both x and y.

- Now consider the following protocol Π^{*} :
- $p_{1}=\bigoplus_{i=1}^{n} x_{i}$;
- $p_{2}=p_{1} \oplus \bigoplus_{i=1}^{n} y_{i}$.

We have $C\left(\Pi^{*}\right)=2$.
It follows that $C(f)=\min _{\Pi \text { for } f} C(\Pi) \leq 2$.

- Therefore, $C(f)=2$.

Matching a Bit

- We consider the function of 10 bits

$$
f\left(a_{0}, a_{1}, a_{2}, a_{3}, b_{0}, b_{1}, b_{2}, b_{3}, s_{0}, s_{1}\right)=1 \quad \text { iff } \quad a_{s_{0}+2 s_{1}}=b_{s_{0}+2 s_{1}} .
$$

- Alice knows $a_{0}, a_{1}, a_{2}, a_{3}, s_{0}$;
- Bob knows $b_{0}, b_{1}, b_{2}, b_{3}, s_{1}$.
- A protocol Π for f is as follows:
- $p_{1}=s_{0}$;
- $p_{2}=\left\langle s_{1}, b_{s_{0}+2 s_{1}}\right\rangle$;
- $p_{3}= \begin{cases}1, & \text { if } a_{s_{0}+2 s_{1}}=b_{s_{0}+2 s_{1}} \\ 0, & \text { otherwise }\end{cases}$
- We have $C(\Pi)=4$.

Fooling Sets

The Fooling Sets Lemma

Let $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ be a function and Π a protocol for f. Suppose that for $x, y \in\{0,1\}^{n}$, with $x \neq y, \Pi(x, x)=\Pi(y, y)$. Then,

$$
f(x, x)=f(x, y)=f(y, x)=f(y, y)
$$

- By hypothesis, $f(x, x)=f(y, y)$.

By symmetry, it suffices to show that $f(x, x)=f(x, y)$. We show by induction on i that p_{i} (on (x, x)) and q_{i} (on (x, y)) agree.

- $p_{1}=P_{1}(x)=q_{1}$;
- Assume $p_{j}=q_{j}$, for all $j<i$.
- Then, if i is odd, the conclusion is obvious.

If i is even, $p_{i}=P_{i}\left(x, p_{1}, \ldots, p_{i-1}\right)=P_{i}\left(y, q_{1}, \ldots, q_{i-1}\right)=q_{i}$, where the middle equation follows from $\Pi(x, x)=\Pi(y, y)$.
For $i=t$, we get the conclusion.

Equality

- Consider the function EQ : $\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$, defined by

$$
\mathrm{EQ}(x, y)= \begin{cases}1, & \text { if } x=y \\ 0, & \text { otherwise }\end{cases}
$$

Theorem

$C(\mathrm{EQ}) \geq n$.

- Suppose there exists a protocol Π for EQ , such that $C(\Pi) \leq n-1$. Then, there exist at most 2^{n-1} distinct communication patterns. But there are at least 2^{n} distinct inputs of the form (x, x). Hence, there exist $x, y \in\{0,1\}^{n}, x \neq y$, such that $\Pi(x, x)=\Pi(y, y)$. By the Fooling Sets Lemma, $\mathrm{EQ}(x, x)=\mathrm{EQ}(x, y)$, a contradiction.

Matrix of f, Rectangles and Monochromatic Tilings

- Let $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ be a function.
- The matrix of $f, M(f)$, is a $2^{n} \times 2^{n}$ matrix, such that, for all $x, y \in\{0,1\}^{n}, M_{x, y}=f(x, y)$.
- A (combinatorial) rectangle in M is a submatrix of M of the form $A \times B$, for some $A, B \subseteq\{0,1\}^{n}$.
- The rectangle $A \times B$ is monochromatic if $M_{x, y}$ is constant, for all $x \in A, y \in B$.
- A monochromatic tiling of $M(f)$ is a partition of $M(f)$ into disjoint monochromatic rectangles.
- $\chi(f)$ is the minimum number of rectangles in any monochromatic tiling of $M(f)$.

The Tiling Method

Theorem

For any $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}, C(f) \geq \log _{2} \chi(f)$.

- Suppose $C(f)=k$. It suffices to show that $M(f)$ has a monochromatic tiling with at most 2^{k} rectangles.

Suppose, in the first round, Alice sends a bit.
$M(f)$ partitions into $A_{0} \times\{0,1\}^{n}$ and $A_{1} \times\{0,1\}^{n}$, where A_{0}, A_{1} are the subsets of the input for which the bit 0 or 1 , respectively, is sent. If, in the next round, Bob sends a bit, then each of $A_{0} \times\{0,1\}^{n}$ and $A_{1} \times\{0,1\}^{n}$ is partitioned into two smaller rectangles similarly.
When the protocol stops (with 2^{k} rectangles in the partition), all pairs (x, y) in the same rectangle are provided with the same answer. So the resulting partition is in monochromatic rectangles.

The Rank Method

- The rank of a square matrix M, $\operatorname{rank}(M)$, is the size of the largest subset of rows which are linearly independent.
- A characterization asserts that the rank of a matrix M is the minimum value of ℓ, such that M can be expressed as $M=\sum_{i=1}^{\ell} B_{i}$, where the B_{i} 's are matrices of rank 1 .

Theorem

For any $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}, \chi(f) \geq \operatorname{rank}(M(f))$.

- Every monochromatic rectangle can be viewed as a $2^{n} \times 2^{n}$ matrix of rank at most 1.
- Returning to $\mathrm{EQ}, \operatorname{rank}(M(\mathrm{EQ}))=2^{n}$.

So $C(\mathrm{EQ}) \geq \log _{2} \chi(\mathrm{EQ}) \geq n$.
So we get an alternative proof of the lower bound.

The Discrepancy Method

- Consider $M(f)$ to be a ± 1 instead of a 0/1-matrix.
- The discrepancy of a rectangle $A \times B$ in a $2^{n} \times 2^{n}$ matrix M is

$$
\operatorname{Disc}_{M}(A \times B)=\frac{1}{2^{2 n}}\left|\sum_{x \in A, y \in B} M_{x, y}\right|
$$

- The discrepancy of the matrix $M(f), \operatorname{Disc}(f)$, is the maximum discrepancy among all rectangles.

Lemma

For any $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}, \chi(f) \geq \frac{1}{\operatorname{Disc}(f)}$.

- Suppose $\chi(f)=k$.

Then, there exists a monochromatic rectangle with $\geq \frac{2^{2 n}}{k}$ entries. Its discrepancy is at least $\frac{1}{k}$.
Putting everything together, $\frac{1}{\operatorname{Disc}(f)} \leq k=\chi(f)$.

Thank you!

- In closing...

Thank you for your Attention!!

