Gate Elimination

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

Seminar Presentation Lake Superior State University

Circuits

- Let Φ be a set of some boolean functions.
- A circuit (or a straight line program) of n variables over the basis Φ is just a sequence g₁,..., g_t of t ≥ n boolean functions such that:
 - the first *n* functions are input variables $g_1 = x_1, \ldots, g_n = x_n$;
 - each subsequent g_i is an application g_i = φ(g_{i1},..., g_{id}) of some basis function φ ∈ Φ (called the gate of g_i) to some previous functions.

I.e., the value $g_i(a)$ of the *i*-th gate g_i on a given input $a \in \{0, 1\}^n$ is the value of the boolean function $\varphi \in \Phi$ applied to the values $g_{i_1}(a)$, ..., $g_{i_d}(a)$ computed at the previous gates.

• A circuit **computes** a boolean function (or a set of boolean functions) if it (or they) are among the g_i.

Visualizing Circuits

• Each circuit can be viewed as a directed acyclic graph whose:

- fanin-0 nodes (those of zero in-degree) correspond to variables;
- each other node v corresponds to a function $\varphi \in \Phi$;
- one (or more) nodes are distinguished as outputs.

Majority Functions

- This circuit has six gates over the basis {∧, ∨, ¬}, is of depth 5 and computes the majority Maj₃(x, y, z) = 1 iff x + y + z ≥ 2.
- In fact, the output is $(x \land y) \lor ((x \lor y) \land \neg (x \land y) \land z)$, which says:
 - *x* = *y* = 1 or
 - exactly one of x and y is 1 and z = 1.

Binary Sum

This circuit has five gates over {⊕, ∧} and computes the binary representation (a, b) of the (real) sum x + y + z of three bits.

a = x ⊕ (y ⊕ z) is 1 exactly when one or three of x, y and z are 1.
b = ((x ⊕ z) ∧ (y ⊕ z)) ⊕ z is 1 if

- *x* = *y* = 1 and *z* = 0; or
- at least one of x, y is 1 and z = 1.

- The size of the circuit is the total number t n of its gates (that is, we do not count the input variables);
- Its **depth** is the length of a longest path from an input to an output gate:
 - Input variables have depth 0;
 - If g_i = φ(g_{i1},..., g_{id}), then the depth of the gate g_i is 1 plus the maximum depth of the gates g_{i1}, ..., g_{id}.
- We assume that every circuit can use constants 0 and 1 as inputs for free.

Outline of the Gate Elimination Technique

• The gate-elimination argument does the following:

- Starts with a given circuit for the function in question.
- Argues that some variable (or set of variables) must fan out to several gates.
- Sets this variable to a constant to eliminate several gates.
- By repeatedly applying this process, concludes that the original circuit must have had many gates.

• We apply the gate elimination argument to threshold functions

$$\Gamma h_k^n(x_1,\ldots,x_n) = 1$$
 iff $x_1 + x_2 + \cdots + x_n \ge k$.

Theorem

Even if all boolean functions in at most two variables are allowed as gates, the function Th_2^n requires at least 2n - 4 gates.

- By induction on *n*.
 - For n = 2 and n = 3 the bound is trivial.
 - For the induction step, take an optimal circuit for Thⁿ₂. Suppose that the top-most gate g acts on variables x_i and x_j, i ≠ j. This gate has the form g = φ(x_i, x_j), for some φ : {0,1}² → {0,1}. Notice that under the four possible settings of these two variables, the function Thⁿ₂ has three different subfunctions

•
$$\operatorname{Th}_{0}^{n-2}$$
, if $x_{i} = x_{j} = 1$;

•
$$Th_1^{n-2}$$
, if exactly one of x_i , x_j is 1;

•
$$\operatorname{Th}_{2}^{n-2}$$
, if $x_{i} = x_{j} = 0$.

Gate Elimination for Threshold Functions

• It follows that either x_i or x_j fans out to another gate h.

Otherwise our circuit would have only two inequivalent sub-circuits under the settings of x_i and x_j , since the gate $g = \varphi(x_i, x_j)$ can only take two values, 0 and 1.

- Now suppose that it is x_i that fans out to h.
- Setting x_i to 0 eliminates the need of both gates g and h.
- The resulting circuit computes Th_2^{n-1} .
- By induction, it has at least 2(n-1) 4 gates.
- Adding the two eliminated gates to this bound shows that the original circuit has at least 2n 4 gates.

The Parity Function

- For circuits over the basis {∧, ∨, ¬} one can prove a slightly stronger lower bound.
- We consider the parity function

$$\oplus_n(x_1,\ldots,x_n)=x_1\oplus x_2\oplus\cdots\oplus x_n.$$

Schorr's Theorem

The minimal number of \land and \lor gates in a circuit over $\{\land,\lor,\neg\}$ computing \oplus_n is 3(n-1).

The upper bound follows since x ⊕ y is equal to (x ∧ ¬y) ∨ (¬x ∧ y).
 For the lower bound we prove the existence of some x_i whose replacement by a suitable constant eliminates 3 gates.
 This implies the assertion for n = 1 directly and for n ≥ 3 by induction.

Let g be the first gate of an optimal circuit for ⊕_n(x).
 Its inputs are different variables x_i and x_j.

If x_i had fanout 1, that is, if g were the only gate for which x_i is acting as input, then we could replace x_j by a constant so that gate g be a constant ($x_j = 0$ if $g = " \land "$ and $x_j = 1$ if $g = " \lor "$).

This would imply that the output became independent of the *i*-th variable x_i in contradiction to the definition of parity.

Hence, x_i must have fanout at least 2.

Let g' be the other gate to which x_i is an input.

We now replace x_i by such a constant that g becomes replaced by a constant ($x_i = 0$ if $g = " \land "$ and $x_i = 1$ if $g = " \lor "$).

Since under this setting of x_i the parity is not replaced by a constant, the gate g cannot be an output gate.

Let h be a successor of g.

Configurations

• We only have two possibilities: either *h* coincides with g' (that is, g has no other successors besides g') or not.

g' = h: In this case g has fanout 1. We can set x_i to a constant so that g' be set to a constant. This will eliminate the need for all three gates g, g' and p. $g' \neq h$: Then we can set x_i to a constant so that g be set to a constant. This will eliminate the need for all three gates g, g' and h.

In either case we eliminate at least 3 gates.

The same argument works if we allow as gates any boolean functions φ(x, y) with the following property:

There exist constants $a, b \in \{0, 1\}$ such that both $\varphi(a, y)$ and $\varphi(x, b)$ are constants.

 The only two-variable functions that do not have this property are the parity function x ⊕ y and its negation x ⊕ y ⊕ 1.

• In closing...

Thank you for your Attention!!