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Circuits

Let Φ be a set of some boolean functions.

A circuit (or a straight line program) of n variables over the basis Φ
is just a sequence g1, . . . , gt of t ≥ n boolean functions such that:

the first n functions are input variables g1 = x1, . . ., gn = xn;
each subsequent gi is an application gi = ϕ(gi1 , . . . , gid ) of some basis
function ϕ ∈ Φ (called the gate of gi) to some previous functions.

I.e., the value gi(a) of the i-th gate gi on a given input a ∈ {0, 1}n is
the value of the boolean function ϕ ∈ Φ applied to the values gi1(a),
. . ., gid (a) computed at the previous gates.

A circuit computes a boolean function (or a set of boolean
functions) if it (or they) are among the gi .
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Visualizing Circuits

Each circuit can be viewed as a directed acyclic graph whose:

fanin-0 nodes (those of zero in-degree) correspond to variables;
each other node v corresponds to a function ϕ ∈ Φ;
one (or more) nodes are distinguished as outputs.

George Voutsadakis (LSSU) Gate Elimination Sault Sainte Marie, 2022 3 / 14



Majority Functions

This circuit has six gates over the basis {∧,∨,¬}, is of depth 5 and
computes the majority Maj3(x , y , z) = 1 iff x + y + z ≥ 2.

In fact, the output is (x ∧ y) ∨ ((x ∨ y) ∧ ¬(x ∧ y) ∧ z), which says:
x = y = 1 or
exactly one of x and y is 1 and z = 1.
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Binary Sum

This circuit has five gates over {⊕,∧} and computes the binary
representation (a, b) of the (real) sum x + y + z of three bits.

a = x ⊕ (y ⊕ z) is 1 exactly when one or three of x , y and z are 1.
b = ((x ⊕ z) ∧ (y ⊕ z))⊕ z is 1 if

x = y = 1 and z = 0; or

at least one of x , y is 1 and z = 1.
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Size of a Circuit

The size of the circuit is the total number t − n of its gates (that is,
we do not count the input variables);

Its depth is the length of a longest path from an input to an output
gate:

Input variables have depth 0;
If gi = ϕ(gi1 , . . . , gid ), then the depth of the gate gi is 1 plus the
maximum depth of the gates gi1 , . . ., gid .

We assume that every circuit can use constants 0 and 1 as inputs for
free.
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Outline of the Gate Elimination Technique

The gate-elimination argument does the following:

Starts with a given circuit for the function in question.
Argues that some variable (or set of variables) must fan out to several
gates.
Sets this variable to a constant to eliminate several gates.
By repeatedly applying this process, concludes that the original circuit
must have had many gates.
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Gate Elimination for Threshold Functions

We apply the gate elimination argument to threshold functions

Thnk(x1, . . . , xn) = 1 iff x1 + x2 + · · · + xn ≥ k .

Theorem

Even if all boolean functions in at most two variables are allowed as gates,
the function Thn2 requires at least 2n − 4 gates.

By induction on n.
For n = 2 and n = 3 the bound is trivial.
For the induction step, take an optimal circuit for Thn2.
Suppose that the top-most gate g acts on variables xi and xj , i 6= j .
This gate has the form g = ϕ(xi , xj), for some ϕ : {0, 1}2 → {0, 1}.
Notice that under the four possible settings of these two variables, the
function Thn2 has three different subfunctions

Thn−2
0 , if xi = xj = 1;

Thn−2
1 , if exactly one of xi , xj is 1;

Thn−2
2 , if xi = xj = 0.
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Gate Elimination for Threshold Functions

It follows that either xi or xj fans out to another gate h.

Otherwise our circuit would have only two inequivalent sub-circuits
under the settings of xi and xj , since the gate g = ϕ(xi , xj) can only
take two values, 0 and 1.

Now suppose that it is xj that fans out to h.

Setting xj to 0 eliminates the need of both gates g and h.

The resulting circuit computes Thn−1
2 .

By induction, it has at least 2(n − 1)− 4 gates.

Adding the two eliminated gates to this bound shows that the original
circuit has at least 2n − 4 gates.
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The Parity Function

For circuits over the basis {∧,∨,¬} one can prove a slightly stronger
lower bound.

We consider the parity function

⊕n(x1, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn.

Schorr’s Theorem

The minimal number of ∧ and ∨ gates in a circuit over {∧,∨,¬}
computing ⊕n is 3(n − 1).

The upper bound follows since x ⊕ y is equal to (x ∧ ¬y) ∨ (¬x ∧ y).

For the lower bound we prove the existence of some xi whose
replacement by a suitable constant eliminates 3 gates.

This implies the assertion for n = 1 directly and for n ≥ 3 by
induction.
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The Parity Function

Let g be the first gate of an optimal circuit for ⊕n(x).

Its inputs are different variables xi and xj .

If xi had fanout 1, that is, if g were the only gate for which xi is
acting as input, then we could replace xj by a constant so that gate g

be a constant (xj = 0 if g = “ ∧ ” and xj = 1 if g = “ ∨ ”).

This would imply that the output became independent of the i -th
variable xi in contradiction to the definition of parity.

Hence, xi must have fanout at least 2.

Let g ′ be the other gate to which xi is an input.

We now replace xi by such a constant that g becomes replaced by a
constant (xi = 0 if g = “ ∧ ” and xi = 1 if g = “ ∨ ”).

Since under this setting of xi the parity is not replaced by a constant,
the gate g cannot be an output gate.

Let h be a successor of g .
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Configurations

We only have two possibilities: either h coincides with g ′ (that is, g
has no other successors besides g ′) or not.

g ′ = h: In this case g has fanout 1.
We can set xi to a constant so that g ′ be set to a constant.
This will eliminate the need for all three gates g , g ′ and p.

g ′ 6= h: Then we can set xi to a constant so that g be set to a constant.
This will eliminate the need for all three gates g , g ′ and h.

In either case we eliminate at least 3 gates.
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A Remark Concerning the Proof

The same argument works if we allow as gates any boolean functions
ϕ(x , y) with the following property:

There exist constants a, b ∈ {0, 1} such that both ϕ(a, y) and ϕ(x , b)
are constants.

The only two-variable functions that do not have this property are the
parity function x ⊕ y and its negation x ⊕ y ⊕ 1.
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Thank you!

In closing...

Thank you for your Attention!!
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