Gate Elimination

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

Seminar Presentation

Lake Superior State University

Circuits

- Let Φ be a set of some boolean functions.
- A circuit (or a straight line program) of n variables over the basis Φ is just a sequence g_{1}, \ldots, g_{t} of $t \geq n$ boolean functions such that:
- the first n functions are input variables $g_{1}=x_{1}, \ldots, g_{n}=x_{n}$;
- each subsequent g_{i} is an application $g_{i}=\varphi\left(g_{i_{1}}, \ldots, g_{i_{d}}\right)$ of some basis function $\varphi \in \Phi$ (called the gate of g_{i}) to some previous functions.
I.e., the value $g_{i}(a)$ of the i-th gate g_{i} on a given input $a \in\{0,1\}^{n}$ is the value of the boolean function $\varphi \in \Phi$ applied to the values $g_{i_{1}}(a)$, $\ldots, g_{i_{d}}(a)$ computed at the previous gates.
- A circuit computes a boolean function (or a set of boolean functions) if it (or they) are among the g_{i}.

Visualizing Circuits

- Each circuit can be viewed as a directed acyclic graph whose:
- fanin-0 nodes (those of zero in-degree) correspond to variables;
- each other node v corresponds to a function $\varphi \in \Phi$;
- one (or more) nodes are distinguished as outputs.

Majority Functions

- This circuit has six gates over the basis $\{\wedge, \vee, \neg\}$, is of depth 5 and computes the majority $\mathrm{Maj}_{3}(x, y, z)=1$ iff $x+y+z \geq 2$.
- In fact, the output is $(x \wedge y) \vee((x \vee y) \wedge \neg(x \wedge y) \wedge z)$, which says:
- $x=y=1$ or
- exactly one of x and y is 1 and $z=1$.

Binary Sum

- This circuit has five gates over $\{\oplus, \wedge\}$ and computes the binary representation (a, b) of the (real) sum $x+y+z$ of three bits.
- $a=x \oplus(y \oplus z)$ is 1 exactly when one or three of x, y and z are 1 .
- $b=((x \oplus z) \wedge(y \oplus z)) \oplus z$ is 1 if
- $x=y=1$ and $z=0$; or
- at least one of x, y is 1 and $z=1$.

Size of a Circuit

- The size of the circuit is the total number $t-n$ of its gates (that is, we do not count the input variables);
- Its depth is the length of a longest path from an input to an output gate:
- Input variables have depth 0 ;
- If $g_{i}=\varphi\left(g_{i_{1}}, \ldots, g_{i_{d}}\right)$, then the depth of the gate g_{i} is 1 plus the maximum depth of the gates $g_{i_{1}}, \ldots, g_{i_{d}}$.
- We assume that every circuit can use constants 0 and 1 as inputs for free.

Outline of the Gate Elimination Technique

- The gate-elimination argument does the following:
- Starts with a given circuit for the function in question.
- Argues that some variable (or set of variables) must fan out to several gates.
- Sets this variable to a constant to eliminate several gates.
- By repeatedly applying this process, concludes that the original circuit must have had many gates.

Gate Elimination for Threshold Functions

- We apply the gate elimination argument to threshold functions

$$
\operatorname{Th}_{k}^{n}\left(x_{1}, \ldots, x_{n}\right)=1 \quad \text { iff } \quad x_{1}+x_{2}+\cdots+x_{n} \geq k .
$$

Theorem

Even if all boolean functions in at most two variables are allowed as gates, the function Th_{2}^{n} requires at least $2 n-4$ gates.

- By induction on n.
- For $n=2$ and $n=3$ the bound is trivial.
- For the induction step, take an optimal circuit for Th_{2}^{n}.

Suppose that the top-most gate g acts on variables x_{i} and $x_{j}, i \neq j$.
This gate has the form $g=\varphi\left(x_{i}, x_{j}\right)$, for some $\varphi:\{0,1\}^{2} \rightarrow\{0,1\}$.
Notice that under the four possible settings of these two variables, the function Th_{2}^{n} has three different subfunctions

- Th_{0}^{n-2}, if $x_{i}=x_{j}=1$;
- Th_{1}^{n-2}, if exactly one of x_{i}, x_{j} is 1 ;
- Th_{2}^{n-2}, if $x_{i}=x_{j}=0$.

Gate Elimination for Threshold Functions

- It follows that either x_{i} or x_{j} fans out to another gate h.

Otherwise our circuit would have only two inequivalent sub-circuits under the settings of x_{i} and x_{j}, since the gate $g=\varphi\left(x_{i}, x_{j}\right)$ can only take two values, 0 and 1 .
Now suppose that it is x_{j} that fans out to h.
Setting x_{j} to 0 eliminates the need of both gates g and h.
The resulting circuit computes Th_{2}^{n-1}.
By induction, it has at least $2(n-1)-4$ gates.
Adding the two eliminated gates to this bound shows that the original circuit has at least $2 n-4$ gates.

The Parity Function

- For circuits over the basis $\{\wedge, \vee, \neg\}$ one can prove a slightly stronger lower bound.
- We consider the parity function

$$
\oplus_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

Schorr's Theorem

The minimal number of \wedge and \vee gates in a circuit over $\{\wedge, \vee, \neg\}$ computing \oplus_{n} is $3(n-1)$.

- The upper bound follows since $x \oplus y$ is equal to $(x \wedge \neg y) \vee(\neg x \wedge y)$. For the lower bound we prove the existence of some x_{i} whose replacement by a suitable constant eliminates 3 gates.
This implies the assertion for $n=1$ directly and for $n \geq 3$ by induction.

The Parity Function

- Let g be the first gate of an optimal circuit for $\oplus_{n}(x)$. Its inputs are different variables x_{i} and x_{j}.
If x_{i} had fanout 1 , that is, if g were the only gate for which x_{i} is acting as input, then we could replace x_{j} by a constant so that gate g be a constant ($x_{j}=0$ if $g=" \wedge "$ and $x_{j}=1$ if $g=" \vee "$).
This would imply that the output became independent of the i-th variable x_{i} in contradiction to the definition of parity.
Hence, x_{i} must have fanout at least 2.
Let g^{\prime} be the other gate to which x_{i} is an input.
We now replace x_{i} by such a constant that g becomes replaced by a constant ($x_{i}=0$ if $g=" \wedge "$ and $x_{i}=1$ if $g=" \vee "$).
Since under this setting of x_{i} the parity is not replaced by a constant, the gate g cannot be an output gate.
Let h be a successor of g.

Configurations

- We only have two possibilities: either h coincides with g^{\prime} (that is, g has no other successors besides g^{\prime}) or not.

$g^{\prime}=h:$ In this case g has fanout 1 .
We can set x_{i} to a constant so that g^{\prime} be set to a constant.
This will eliminate the need for all three gates g, g^{\prime} and p.
$g^{\prime} \neq h$: Then we can set x_{i} to a constant so that g be set to a constant.
This will eliminate the need for all three gates g, g^{\prime} and h.
In either case we eliminate at least 3 gates.

A Remark Concerning the Proof

- The same argument works if we allow as gates any boolean functions $\varphi(x, y)$ with the following property:

There exist constants $a, b \in\{0,1\}$ such that both $\varphi(a, y)$ and $\varphi(x, b)$ are constants.

- The only two-variable functions that do not have this property are the parity function $x \oplus y$ and its negation $x \oplus y \oplus 1$.

Thank you!

- In closing...

Thank you for your Attention!!

