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Circuits

o Let ® be a set of some boolean functions.
@ A circuit (or a straight line program) of n variables over the basis ¢

is just a sequence gi,...,& of t > n boolean functions such that:
o the first n functions are input variables g1 = x1, ..., g = Xn;
o each subsequent g; is an application g; = ©(gi,, - - ., &i,) of some basis

function ¢ € ® (called the gate of g;) to some previous functions.

l.e., the value gj(a) of the i-th gate g; on a given input a € {0,1}" is
the value of the boolean function ¢ € ® applied to the values g; (a),
..., gi,(a) computed at the previous gates.
@ A circuit computes a boolean function (or a set of boolean
functions) if it (or they) are among the g;.
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Visualizing Circuits

@ Each circuit can be viewed as a directed acyclic graph whose:

o fanin-0 nodes (those of zero in-degree) correspond to variables;
o each other node v corresponds to a function ¢ € ®;
2 one (or more) nodes are distinguished as outputs.

x Yy
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Majority Functions

@ This circuit has six gates over the basis {A, V, -}, is of depth 5 and
computes the majority Maj;(x,y,z) =1iff x+y +z > 2.
@ In fact, the output is (x A y) V ((x Vy) A =(x A y) A z), which says:
o x=y=1or
o exactly one of x and y is 1 and z = 1.

George Voutsadakis (LSSU) Gate Elimination Sault Sainte Marie, 2022 4/14



Binary Sum

@ This circuit has five gates over {®, A} and computes the binary
representation (a, b) of the (real) sum x + y + z of three bits.
9 a=x® (y®z) is 1 exactly when one or three of x,y and z are 1.
o b=((x®z2)AN(y@z)Pzislif
@ x=y=1land z=0; or
o at least one of x,y is 1 and z = 1.
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Size of a Circuit

@ The size of the circuit is the total number t — n of its gates (that is,
we do not count the input variables);
@ Its depth is the length of a longest path from an input to an output
gate:
@ Input variables have depth 0;
o If gi = (g, --,&,), then the depth of the gate g; is 1 plus the
maximum depth of the gates gj, ..., gi,.
@ We assume that every circuit can use constants 0 and 1 as inputs for
free.
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Outline of the Gate Elimination Technique

o The gate-elimination argument does the following:

o Starts with a given circuit for the function in question.

o Argues that some variable (or set of variables) must fan out to several
gates.
Sets this variable to a constant to eliminate several gates.
By repeatedly applying this process, concludes that the original circuit
must have had many gates.

¢ ©
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Gate Elimination for Threshold Functions

@ We apply the gate elimination argument to threshold functions
Thi(x1,...,xn) =1 iff x31+x+ -+ x, > k.

Even if all boolean functions in at most two variables are allowed as gates,
the function Thj requires at least 2n — 4 gates.

@ By induction on n.
o For n =2 and n = 3 the bound is trivial.
o For the induction step, take an optimal circuit for ThJ.
Suppose that the top-most gate g acts on variables x; and x;, i # .
This gate has the form g = ¢(x;, x;), for some ¢ : {0,1}? — {0,1}.
Notice that under the four possible settings of these two variables, the
function Th; has three different subfunctions
@ Thg_2, if xi =x; =1,
o Thi72, if exactly one of x;, xj is 1;
° Thg_2, if xi =x; =0.
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Gate Elimination for Threshold Functions

@ It follows that either x; or x; fans out to another gate h.

Otherwise our circuit would have only two inequivalent sub-circuits
under the settings of x; and x;, since the gate g = ¢(x;, xj) can only
take two values, 0 and 1.

Now suppose that it is x; that fans out to h.

Setting x; to 0 eliminates the need of both gates g and h.
The resulting circuit computes Thy~*.

By induction, it has at least 2(n — 1) — 4 gates.

Adding the two eliminated gates to this bound shows that the original
circuit has at least 2n — 4 gates.
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The Parity Function

o For circuits over the basis {A,V, =} one can prove a slightly stronger
lower bound.

@ We consider the parity function

On(X1y- s Xn) =X1 D X2 D -+ D Xp.

Schorr’'s Theorem

The minimal number of A and V gates in a circuit over {A,V,—}
computing @, is 3(n — 1).

@ The upper bound follows since x @ y is equal to (x A =y) V (=x A y).
For the lower bound we prove the existence of some x; whose
replacement by a suitable constant eliminates 3 gates.

This implies the assertion for n = 1 directly and for n > 3 by
induction.
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The Parity Function

o Let g be the first gate of an optimal circuit for &, (x).
Its inputs are different variables x; and x;.
If x; had fanout 1, that is, if g were the only gate for which x; is
acting as input, then we could replace x; by a constant so that gate g
be a constant (x; =0if g="“A"and x;=1if g="Vv").
This would imply that the output became independent of the i-th
variable x; in contradiction to the definition of parity.
Hence, x; must have fanout at least 2.
Let g’ be the other gate to which x; is an input.
We now replace x; by such a constant that g becomes replaced by a
constant (x;, =0ifg="“A"and x;=1ifg="V").
Since under this setting of x; the parity is not replaced by a constant,
the gate g cannot be an output gate.
Let h be a successor of g.
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Configurations

@ We only have two possibilities: either h coincides with g’ (that is, g
has no other successors besides g’) or not.

xi Xj Xl' Xj
, Y

g’ = h: In this case g has fanout 1.
We can set x; to a constant so that g’ be set to a constant.
This will eliminate the need for all three gates g, g’ and p.

g’ # h: Then we can set x; to a constant so that g be set to a constant.
This will eliminate the need for all three gates g, g’ and h.

In either case we eliminate at least 3 gates.
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A Remark Concerning the Proof

@ The same argument works if we allow as gates any boolean functions
©(x,y) with the following property:

There exist constants a, b € {0, 1} such that both ¢(a, y) and ¢(x, b)
are constants.

@ The only two-variable functions that do not have this property are the
parity function x @ y and its negation x ® y @ 1.
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Thank you!

@ In closing...

Thank you for your Attention!!
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