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Oracle Turing Machines

@ An oracle Turing machine is a Turing machine that has a special
read-write tape, called oracle tape and three special states gquery,
Gyes and gno (not to be confused with Gaccept aNd Greject )-

@ The operation of M, in addition to the input language, needs a
specification of a language O, the oracle language.

@ Whenever, during its execution, M enters the state qquery, With g the
contents of the oracle tape, then the machine moves into the state

9 Gyes if g € O;
° Gno if g O.

@ Regardless of the choice of O, a membership query to O counts as a

single computational step.

@ If M is an oracle machine, OC {0,1}* a language and x € {0,1}*,
then the output of M on input x with oracle O is denoted M©(x).

@ Nondeterministic oracle Turing machines are defined similarly.
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The Classes P© and NP°

o For every OC {0,1}*, P9 is the class of all languages that can be
decided by a polynomial time deterministic Turing machine with
oracle access to O.

o NPP© is the class of all languages that can be decided by a polynomial
time nondeterministic Turing machine with oracle access to O.
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Examples

@ Suppose SAT is the language of all unsatisfiable Boolean formulz.
Then SAT € P57,
o Let O € P. Then PO =P.
Allowing an oracle may only help decide more languages.
Hence, P C PO.
Suppose that L € PO.

Consider the polynomial time Turing machine M with oracle O that
computes L.

Transform it into a machine that operates like M except that, instead
of querying the oracle, decides membership in O from scratch (in
polynomial time).

This is a polynomial time deterministic Turing machine deciding L.
Thus, L € P and P© C P.

George Voutsadakis (LSSU) Oracle Turing Machines Sault Sainte Marie, 2022 4 /16



The Language EXpCoM of Exponential Computation

@ Consider the language
ExpCoM = {(M, x,1") : M accepts x within 2" steps}.

Then PEXPCOM — NPEXPCOM — EXP (.= ] DTIME(2")).

Using ExPCOM as an oracle allows performing exponential
computations in a single step. So EXP C PEXPCoM,

Suppose M is a nondeterministic polynomial-time oracle Turing
machine.

Exponential time is sufficient to:

o enumerate all M’s nondeterministic choices;
o answer all of ExpCoOM's oracle queries.

Therefore, NPEXPCOM € EXP.
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Diagonalization and Relativization

@ Several results in complexity separating classes rely on the method of
“pure” diagonalization, a technique that relies solely on the
following properties of Turing machines:

| The existence of an effective representation of Turing machines by
strings;

Il The ability of one Turing machine to simulate another without much
overhead in running time or space.

@ For any choice of oracle O, the set of all Turing machines with access
to O satisfies properties | and Il.
o Turing machines with oracle O can be represented as strings;
o The representation can be used to simulate such Turing machines by a
universal Turing machine (having itself access to oracle O).
@ It follows that any result about Turing machines or complexity classes
that uses only | and Il relativizes, i.e., holds also for the set of all
Turing machines with oracle O.
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The Baker, Gill, Solovay Theorem

The Baker, Gill, Solovay Theorem

There exist oracle languages A and B, such that PA = NP% and
PE £ NP5,

o Let A = ExpCoM. We saw that PA = NP4,
o Let B be any language. Define

Us ={1": 3y € B)(ly| = n)}.

Ug € NPB. The following polynomial time nondeterministic Turing
machine with oracle B decides Ug.
On input x:
Check (in linear time) whether x = 11X If not, reject;
Guess in linear time y € {0, 1}
Query oracle whether y € B;
If yes, accept; else reject.

The heart of the argument is to construct B, such that Ug ¢ PB.
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Stage-Wise Construction of B

@ For all i, let M; be the oracle TM represented by i in binary.
B is constructed in stages, where Stage i ensures that I\/I}3 does not
decide Up within % steps (n depends on 1).
Initialize B = 0);
Stage i: Assume “€ B?" has been decided for finitely many strings.
Choose n exceeding the length of all such strings.
Run M; on 1" for 2 steps.
o If M; queries the oracle on a decided string, answer consistently;

@ Otherwise, declare that the stnring ¢ B.
We have decided the fate of < f—o strings of length n, all declared ¢ B.

@ If M; accepts 1", all remaining % strings of length n are declared

Z B. So 1" ¢ Ug.
o If M; rejects 1", pick a string x of length n not queried upon and

declare x € B. So 1" € Us.
We made sure that M; does not decide Ugp.
Since every polynomial is smaller than % for large n and every Turing
machine is represented by infinitely many strings, U & PB.
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Significance for P Z NP

@ We saw that “pure” diagonalization relativizes.

@ Since there are oracles A and B, relative to which PA = NP# and
PB £ NPB, “pure” diagonalization alone cannot resolve P ~ NP

@ It is still possible that diagonalization, or a technique involving
simulation, may be used to tackle P z NP, but it has to use some
fact about Turing machines that does not hold in the presence or
oracles, i.e., that does not relativize.
That is, some property different from | and Il must be added in the
mix.
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Oracle Classes: Warm-Up

@ For a class C of languages, we set
= JP® and NP°= NP
oec Oec

@ We obviously have

NP C PN? and co-NP C PNP,
o It is likely that
NP Uco-NP G PNP.

However, if NP = P, then PNP = P and all three classes above would
be identical.
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The Polynomial Hierarchy via Oracles

o Let X1 := NP, I := co-NP, and A; := P.
@ For k> 1, let

b A
o Yyq1:= NPT }
o I'Ik+1 = CO—Zk+1; ToUMy
o Ayy1 = P«
T, My
@ The polynomial hierarchy PH is the union ~_. 7
T,
PH= | = AT
k>1 T
o . ¥, UMy = NP Uco-NP
@ It is also consistent to let X9 =g = Ag = P, P
and to extend the definition to all K > 0. Ti=NP M = coNP
~_ "
Indeed we have, ¥1 = NP, l; = co-NP and 1011, = NP (1 co-NP
A =P.
A =P
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Complexity Theoretic Hypotheses

@ The conjecture that the classes of the "
polynomial hierarchy form a genuine hierarchy T
contains the conjecture that: T,0m,

o all the inclusions are strict inclusions; . .
o the classes X and [y are incomparable with 2\\ /2
respect to set inclusion. To0M,

@ Thus we obtain the following complexity
theoretical hypotheses: A{

o Xi 7& Z/<+1; ¥, UMy =NPUco-NP
o [l 7é I_lk—t-l; / \
@ Xy 7& My; ¥, =NP My = co-NP
o Ai# TN # T # T UMy # A, L~

T

A =P
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Logical Characterizations

Theorem

A decision problem L belongs to the class ¥ if and only if there is a poly
p and a decision problem L’ € P, such that for A = {0, 1}p(|x|),

L={x:(3ncA)NMrecA)@ycA) - (QuecA(y,. . .,y €L}

The quantifier @ is chosen to be an existential or universal quantifier in
such a way that the sequence of quantifiers is alternating.

@ Using DeMorgan's Laws we obtain:

Corollary

A decision problem L is in 1, if and only if there is a polynomial p and a
decision problem L’ € P, such that for A = {0, 1}P(X)| then

L={x:(Vy1 €A @y €A (Qvk € A)(x,y1,...,yk) € L'}
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Horizontal Collapsibility

If ¥4 = My, then PH = ¥,

® We show that Xy = Iy implies Xy 11 = Mg11 = 2.
The argument can be completed using induction on k.

Let's look at the case k = 4. From the logical characterizations,
> 4 = Iy, means that IVIVP = Vav3P, where:

o Behind the quantifiers we may only have polynomially many variables;
o P stands for decision problems from P, which may be different on the
two sides of the equation.

Now we consider ¥, i.e., a problem of the form 3(V3V3P).

By hypothesis, this is of form 33VIVP. But two quantifiers of the
same type can be brought together as a single quantifier.

So every Ys-problem is of the form FV3VP and so belongs to ¥ 4.
It follows that X5 = ¥4 = l4. Similarly, we get M5 =My = X4.
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Vertical Collapsibility

Corollary

If T4 = Tys1, then PH = X4

@ We know that Xx C lMy41.
From X = X411, we get 2411 C Myyg.
But, by definition, My 1 := co-X 411, whence, Xp11 = Myyg.
The Theorem implies that PH = X ;.
By hypothesis, PH = ¥ .
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Thank you!

@ In closing...

Thank you for your Attention!!
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