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Oracle Turing Machines

An oracle Turing machine is a Turing machine that has a special
read-write tape, called oracle tape and three special states qquery,
qyes and qno (not to be confused with qaccept and qreject).

The operation of M, in addition to the input language, needs a
specification of a language O, the oracle language.

Whenever, during its execution, M enters the state qquery, with q the
contents of the oracle tape, then the machine moves into the state

qyes if q ∈ O;
qno if q 6∈ O.

Regardless of the choice of O, a membership query to O counts as a
single computational step.

If M is an oracle machine, O⊆ {0, 1}∗ a language and x ∈ {0, 1}∗,
then the output of M on input x with oracle O is denoted MO(x).

Nondeterministic oracle Turing machines are defined similarly.
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The Classes PO and NPO

For every O⊆ {0, 1}∗, PO is the class of all languages that can be
decided by a polynomial time deterministic Turing machine with
oracle access to O.

NPO is the class of all languages that can be decided by a polynomial
time nondeterministic Turing machine with oracle access to O.
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Examples

Suppose Sat is the language of all unsatisfiable Boolean formulæ.

Then Sat ∈ PSat.

Let O ∈ P. Then PO = P.

Allowing an oracle may only help decide more languages.

Hence, P ⊆ PO.

Suppose that L ∈ PO.

Consider the polynomial time Turing machine M with oracle O that
computes L.

Transform it into a machine that operates like M except that, instead
of querying the oracle, decides membership in O from scratch (in
polynomial time).

This is a polynomial time deterministic Turing machine deciding L.

Thus, L ∈ P and PO ⊆ P.
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The Language ExpCom of Exponential Computation

Consider the language

ExpCom = {〈M, x , 1n〉 : M accepts x within 2n steps}.

Then PExpCom = NPExpCom = EXP (:=
⋃

c DTIME(2n
c

)).

Using ExpCom as an oracle allows performing exponential
computations in a single step. So EXP ⊆ PExpCom.

Suppose M is a nondeterministic polynomial-time oracle Turing
machine.

Exponential time is sufficient to:

enumerate all M ’s nondeterministic choices;
answer all of ExpCom’s oracle queries.

Therefore, NPExpCom ⊆ EXP.
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Diagonalization and Relativization

Several results in complexity separating classes rely on the method of
“pure” diagonalization, a technique that relies solely on the
following properties of Turing machines:

I The existence of an effective representation of Turing machines by
strings;

II The ability of one Turing machine to simulate another without much
overhead in running time or space.

For any choice of oracle O, the set of all Turing machines with access
to O satisfies properties I and II.

Turing machines with oracle O can be represented as strings;
The representation can be used to simulate such Turing machines by a
universal Turing machine (having itself access to oracle O).

It follows that any result about Turing machines or complexity classes
that uses only I and II relativizes, i.e., holds also for the set of all
Turing machines with oracle O.

George Voutsadakis (LSSU) Oracle Turing Machines Sault Sainte Marie, 2022 6 / 16



The Baker, Gill, Solovay Theorem

The Baker, Gill, Solovay Theorem

There exist oracle languages A and B, such that PA = NPA and
PB 6= NPB.

Let A = ExpCom. We saw that PA = NPA.

Let B be any language. Define

UB = {1n : (∃y ∈ B)(|y | = n)}.

UB ∈ NPB. The following polynomial time nondeterministic Turing
machine with oracle B decides UB.

On input x :
Check (in linear time) whether x = 1|x|; If not, reject;
Guess in linear time y ∈ {0, 1}|x|;
Query oracle whether y ∈ B;

If yes, accept; else reject.

The heart of the argument is to construct B, such that UB 6∈ PB.
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Stage-Wise Construction of B

For all i , let Mi be the oracle TM represented by i in binary.

B is constructed in stages, where Stage i ensures that MB
i does not

decide UB within 2n

10 steps (n depends on i).

Initialize B = ∅;
Stage i : Assume “∈ B?” has been decided for finitely many strings.

Choose n exceeding the length of all such strings.
Run Mi on 1n for 2n

10 steps.
If Mi queries the oracle on a decided string, answer consistently;

Otherwise, declare that the string 6∈ B.

We have decided the fate of ≤ 2n

10 strings of length n, all declared 6∈ B.

If Mi accepts 1
n, all remaining 9·2n

10
strings of length n are declared

6∈ B. So 1n 6∈ UB.

If Mi rejects 1
n, pick a string x of length n not queried upon and

declare x ∈ B. So 1n ∈ UB.

We made sure that Mi does not decide UB.

Since every polynomial is smaller than 2n

10 for large n and every Turing
machine is represented by infinitely many strings, UB 6∈ PB.

George Voutsadakis (LSSU) Oracle Turing Machines Sault Sainte Marie, 2022 8 / 16



Significance for P
?
= NP

We saw that “pure” diagonalization relativizes.

Since there are oracles A and B, relative to which PA = NPA and

PB 6= NPB, “pure” diagonalization alone cannot resolve P
?
= NP.

It is still possible that diagonalization, or a technique involving

simulation, may be used to tackle P
?
= NP, but it has to use some

fact about Turing machines that does not hold in the presence or
oracles, i.e., that does not relativize.

That is, some property different from I and II must be added in the
mix.
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Oracle Classes: Warm-Up

For a class C of languages, we set

PC =
⋃

O∈C

PO and NPC =
⋃

O∈C

NPO
.

We obviously have

NP ⊆ PNP and co-NP ⊆ PNP
.

It is likely that
NP ∪ co-NP $ PNP

.

However, if NP = P, then PNP = P and all three classes above would
be identical.
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The Polynomial Hierarchy via Oracles

Let Σ1 := NP, Π1 := co-NP, and ∆1 := P.

For k ≥ 1, let

Σk+1 := NPΣk ;
Πk+1 := co-Σk+1;
∆k+1 := PΣk .

The polynomial hierarchy PH is the union

PH =
⋃

k≥1

Σk .

It is also consistent to let Σ0 = Π0 = ∆0 = P,
and to extend the definition to all k ≥ 0.

Indeed we have, Σ1 = NP, Π1 = co-NP and
∆1 = P.
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Complexity Theoretic Hypotheses

The conjecture that the classes of the
polynomial hierarchy form a genuine hierarchy
contains the conjecture that:

all the inclusions are strict inclusions;
the classes Σk and Πk are incomparable with
respect to set inclusion.

Thus we obtain the following complexity
theoretical hypotheses:

Σk 6= Σk+1;
Πk 6= Πk+1;
Σk 6= Πk ;
∆k 6= Σk ∩ Πk 6= Σk 6= Σk ∪ Πk 6= ∆k+1.
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Logical Characterizations

Theorem

A decision problem L belongs to the class Σk if and only if there is a poly
p and a decision problem L

′ ∈ P, such that for A = {0, 1}p(|x |),

L = {x : (∃y1 ∈ A)(∀y2 ∈ A)(∃y3 ∈ A) · · · (Qyk ∈ A)(x , y1, . . . , yk) ∈ L
′}.

The quantifier Q is chosen to be an existential or universal quantifier in
such a way that the sequence of quantifiers is alternating.

Using DeMorgan’s Laws we obtain:

Corollary

A decision problem L is in Πk if and only if there is a polynomial p and a
decision problem L

′ ∈ P, such that for A = {0, 1}p(|x |), then

L = {x : (∀y1 ∈ A)(∃y2 ∈ A) · · · (Qyk ∈ A)(x , y1, . . . , yk) ∈ L
′}.
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Horizontal Collapsibility

Theorem

If Σk = Πk , then PH = Σk .

We show that Σk = Πk implies Σk+1 = Πk+1 = Σk .

The argument can be completed using induction on k .

Let’s look at the case k = 4. From the logical characterizations,
Σ4 = Π4, means that ∃∀∃∀P = ∀∃∀∃P, where:

Behind the quantifiers we may only have polynomially many variables;
P stands for decision problems from P, which may be different on the
two sides of the equation.

Now we consider Σ5, i.e., a problem of the form ∃(∀∃∀∃P).

By hypothesis, this is of form ∃∃∀∃∀P. But two quantifiers of the
same type can be brought together as a single quantifier.

So every Σ5-problem is of the form ∃∀∃∀P and so belongs to Σ4.

It follows that Σ5 = Σ4 = Π4. Similarly, we get Π5 = Π4 = Σ4.

George Voutsadakis (LSSU) Oracle Turing Machines Sault Sainte Marie, 2022 14 / 16



Vertical Collapsibility

Corollary

If Σk = Σk+1, then PH = Σk .

We know that Σk ⊆ Πk+1.

From Σk = Σk+1, we get Σk+1 ⊆ Πk+1.

But, by definition, Πk+1 := co-Σk+1, whence, Σk+1 = Πk+1.

The Theorem implies that PH = Σk+1.

By hypothesis, PH = Σk .
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Thank you!

In closing...

Thank you for your Attention!!
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