Oracle Turing Machines

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

Seminar Presentation

Lake Superior State University

Oracle Turing Machines

- An oracle Turing machine is a Turing machine that has a special read-write tape, called oracle tape and three special states $q_{\text {query }}$, $q_{\text {yes }}$ and $q_{\text {no }}$ (not to be confused with $q_{\text {accept }}$ and $q_{\text {reject }}$).
- The operation of M, in addition to the input language, needs a specification of a language O , the oracle language.
- Whenever, during its execution, M enters the state $q_{\text {query }}$, with q the contents of the oracle tape, then the machine moves into the state
- qyes if $q \in \mathrm{O}$;
- $q_{\text {no }}$ if $q \notin \mathrm{O}$.
- Regardless of the choice of O , a membership query to O counts as a single computational step.
- If M is an oracle machine, $\mathrm{O} \subseteq\{0,1\}^{*}$ a language and $x \in\{0,1\}^{*}$, then the output of M on input x with oracle O is denoted $M^{\mathrm{O}}(x)$.
- Nondeterministic oracle Turing machines are defined similarly.

The Classes \mathbf{P}^{O} and $\mathbf{N P}^{\mathbf{O}}$

- For every $\mathrm{O} \subseteq\{0,1\}^{*}, \mathbf{P}^{\mathrm{O}}$ is the class of all languages that can be decided by a polynomial time deterministic Turing machine with oracle access to O .
- $\mathbf{N P}^{\mathrm{O}}$ is the class of all languages that can be decided by a polynomial time nondeterministic Turing machine with oracle access to O .

Examples

- Suppose $\overline{\mathrm{SAT}}$ is the language of all unsatisfiable Boolean formulæ. Then $\overline{\text { Sat }} \in \mathbf{P}^{\text {Sat }}$.
- Let $\mathrm{O} \in \mathbf{P}$. Then $\mathbf{P}^{\mathrm{O}}=\mathbf{P}$.

Allowing an oracle may only help decide more languages. Hence, $\mathbf{P} \subseteq \mathbf{P}^{\mathrm{O}}$.
Suppose that $L \in \mathbf{P}^{\mathrm{O}}$.
Consider the polynomial time Turing machine M with oracle O that computes L.
Transform it into a machine that operates like M except that, instead of querying the oracle, decides membership in O from scratch (in polynomial time).
This is a polynomial time deterministic Turing machine deciding L . Thus, $\mathrm{L} \in \mathbf{P}$ and $\mathbf{P}^{\mathrm{O}} \subseteq \mathbf{P}$.

The Language ExpCom of Exponential Computation

- Consider the language

$$
\text { ExpCom }=\left\{\left\langle M, x, 1^{n}\right\rangle: M \text { accepts } x \text { within } 2^{n} \text { steps }\right\} .
$$

Then $\mathbf{P}^{\text {ExpСом }}=\mathbf{N} \mathbf{P}^{\text {ExpCom }}=\mathbf{E X P}\left(:=\bigcup_{c} \mathbf{D T I M E}\left(2^{n^{c}}\right)\right)$.
Using ExpCom as an oracle allows performing exponential computations in a single step. So EXP $\subseteq \mathbf{P}^{\text {ExpСом }}$.
Suppose M is a nondeterministic polynomial-time oracle Turing machine.
Exponential time is sufficient to:

- enumerate all M 's nondeterministic choices;
- answer all of ExpCom's oracle queries.

Therefore, $\mathbf{N P}{ }^{\text {ExpCom }} \subseteq \mathbf{E X P}$.

Diagonalization and Relativization

- Several results in complexity separating classes rely on the method of "pure" diagonalization, a technique that relies solely on the following properties of Turing machines:

I The existence of an effective representation of Turing machines by strings;
II The ability of one Turing machine to simulate another without much overhead in running time or space.

- For any choice of oracle O, the set of all Turing machines with access to O satisfies properties I and II.
- Turing machines with oracle O can be represented as strings;
- The representation can be used to simulate such Turing machines by a universal Turing machine (having itself access to oracle O).
- It follows that any result about Turing machines or complexity classes that uses only I and II relativizes, i.e., holds also for the set of all Turing machines with oracle O.

The Baker, Gill, Solovay Theorem

The Baker, Gill, Solovay Theorem

There exist oracle languages A and B, such that $\mathbf{P}^{\mathrm{A}}=\mathbf{N} \mathbf{P}^{\mathrm{A}}$ and $\mathbf{P}^{\mathrm{B}} \neq \mathbf{N P}^{\mathrm{B}}$.

- Let $\mathrm{A}=$ ExpCom. We saw that $\mathbf{P}^{\mathrm{A}}=\mathbf{N} \mathbf{P}^{\mathrm{A}}$.
- Let B be any language. Define

$$
\mathrm{U}_{\mathrm{B}}=\left\{1^{n}:(\exists y \in \mathrm{~B})(|y|=n)\right\} .
$$

$\mathrm{U}_{\mathrm{B}} \in \mathbf{N P}^{\mathrm{B}}$. The following polynomial time nondeterministic Turing machine with oracle B decides U_{B}.

On input x :
Check (in linear time) whether $x=1^{|x|}$; If not, reject;
Guess in linear time $y \in\{0,1\}^{|x|}$;
Query oracle whether $y \in B$;
If yes, accept; else reject.
The heart of the argument is to construct B , such that $\mathrm{U}_{\mathrm{B}} \notin \mathbf{P}^{\mathrm{B}}$.

Stage-Wise Construction of B

- For all i, let M_{i} be the oracle TM represented by i in binary. B is constructed in stages, where Stage i ensures that M_{i}^{B} does not decide U_{B} within $\frac{2^{n}}{10}$ steps (n depends on i).
Initialize $\mathrm{B}=\emptyset$;
Stage i : Assume " $\in \mathrm{B}$?" has been decided for finitely many strings.
Choose n exceeding the length of all such strings.
Run M_{i} on 1^{n} for $\frac{2^{n}}{10}$ steps.
- If M_{i} queries the oracle on a decided string, answer consistently;
- Otherwise, declare that the string $\notin \mathrm{B}$.

We have decided the fate of $\leq \frac{2^{n}}{10}$ strings of length n, all declared $\notin \mathrm{B}$.

- If M_{i} accepts 1^{n}, all remaining $\frac{9 \cdot 2^{n}}{10}$ strings of length n are declared \notin B. So $1^{n} \notin \mathrm{U}_{\mathrm{B}}$.
- If M_{i} rejects 1^{n}, pick a string x of length n not queried upon and declare $x \in \mathrm{~B}$. So $1^{n} \in \mathrm{U}_{\mathrm{B}}$.
We made sure that M_{i} does not decide U_{B}.
Since every polynomial is smaller than $\frac{2^{n}}{10}$ for large n and every Turing machine is represented by infinitely many strings, $\mathrm{U}_{\mathrm{B}} \notin \mathbf{P}^{\mathrm{B}}$.

Significance for $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$

- We saw that "pure" diagonalization relativizes.
- Since there are oracles A and B, relative to which $\mathbf{P}^{\mathrm{A}}=\mathbf{N} \mathbf{P}^{\mathrm{A}}$ and $\mathbf{P}^{\mathrm{B}} \neq \mathbf{N} \mathbf{P}^{\mathrm{B}}$, "pure" diagonalization alone cannot resolve $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$.
- It is still possible that diagonalization, or a technique involving simulation, may be used to tackle $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$, but it has to use some fact about Turing machines that does not hold in the presence or oracles, i.e., that does not relativize.
That is, some property different from I and II must be added in the mix.

Oracle Classes: Warm-Up

- For a class \mathcal{C} of languages, we set

$$
\mathbf{P}^{\mathcal{C}}=\bigcup_{\mathrm{O} \in \mathcal{C}} \mathbf{P}^{\mathrm{O}} \quad \text { and } \quad \mathbf{N} \mathbf{P}^{\mathcal{C}}=\bigcup_{\mathrm{O} \in \mathcal{C}} \mathbf{N} \mathbf{P}^{\mathrm{O}} .
$$

- We obviously have

$$
\mathbf{N P} \subseteq \mathbf{P}^{\mathbf{N P}} \quad \text { and } \quad \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P}^{\mathbf{N P}}
$$

- It is likely that

$$
\mathbf{N P} \cup \mathbf{c o}-\mathbf{N P} \varsubsetneqq \mathbf{P}^{N P} .
$$

However, if $\mathbf{N P}=\mathbf{P}$, then $\mathbf{P}^{\mathbf{N P}}=\mathbf{P}$ and all three classes above would be identical.

The Polynomial Hierarchy via Oracles

- Let $\Sigma_{1}:=\mathbf{N P}, \Pi_{1}:=\mathbf{c o}-\mathbf{N P}$, and $\Delta_{1}:=\mathbf{P}$.
- For $k \geq 1$, let
- $\Sigma_{k+1}:=\mathbf{N P}^{\Sigma_{k}} ;$
- $\Pi_{k+1}:=\mathbf{c o}-\Sigma_{k+1}$;
- $\Delta_{k+1}:=\mathbf{P}^{\Sigma_{k}}$.
- The polynomial hierarchy $\mathbf{P H}$ is the union

$$
\mathbf{P H}=\bigcup_{k \geq 1} \Sigma_{k} .
$$

- It is also consistent to let $\Sigma_{0}=\Pi_{0}=\Delta_{0}=\mathbf{P}$, and to extend the definition to all $k \geq 0$. Indeed we have, $\Sigma_{1}=\mathbf{N P}, \Pi_{1}=\mathbf{c o}-\mathbf{N P}$ and $\Delta_{1}=\mathbf{P}$.

Complexity Theoretic Hypotheses

- The conjecture that the classes of the polynomial hierarchy form a genuine hierarchy contains the conjecture that:
- all the inclusions are strict inclusions;
- the classes Σ_{k} and Π_{k} are incomparable with respect to set inclusion.
- Thus we obtain the following complexity theoretical hypotheses:
- $\Sigma_{k} \neq \Sigma_{k+1}$;
- $\Pi_{k} \neq \Pi_{k+1}$;
- $\Sigma_{k} \neq \Pi_{k}$;
- $\Delta_{k} \neq \Sigma_{k} \cap \Pi_{k} \neq \Sigma_{k} \neq \Sigma_{k} \cup \Pi_{k} \neq \Delta_{k+1}$.

Logical Characterizations

Theorem

A decision problem L belongs to the class Σ_{k} if and only if there is a poly p and a decision problem $L^{\prime} \in \mathbf{P}$, such that for $A=\{0,1\}^{p(|x|)}$, $\mathrm{L}=\left\{x:\left(\exists y_{1} \in A\right)\left(\forall y_{2} \in A\right)\left(\exists y_{3} \in A\right) \cdots\left(Q y_{k} \in A\right)\left(x, y_{1}, \ldots, y_{k}\right) \in \mathrm{L}^{\prime}\right\}$. The quantifier Q is chosen to be an existential or universal quantifier in such a way that the sequence of quantifiers is alternating.

- Using DeMorgan's Laws we obtain:

Corollary

A decision problem L is in Π_{k} if and only if there is a polynomial p and a decision problem $L^{\prime} \in \mathbf{P}$, such that for $A=\{0,1\}^{p(|x|)}$, then

$$
\mathrm{L}=\left\{x:\left(\forall y_{1} \in A\right)\left(\exists y_{2} \in A\right) \cdots\left(Q y_{k} \in A\right)\left(x, y_{1}, \ldots, y_{k}\right) \in \mathrm{L}^{\prime}\right\}
$$

Horizontal Collapsibility

Theorem

If $\Sigma_{k}=\Pi_{k}$, then $\mathrm{PH}=\Sigma_{k}$.

- We show that $\Sigma_{k}=\Pi_{k}$ implies $\Sigma_{k+1}=\Pi_{k+1}=\Sigma_{k}$.

The argument can be completed using induction on k.
Let's look at the case $k=4$. From the logical characterizations, $\Sigma_{4}=\Pi_{4}$, means that $\exists \forall \exists \forall \mathbf{P}=\forall \exists \forall \exists \mathbf{P}$, where:

- Behind the quantifiers we may only have polynomially many variables;
- P stands for decision problems from \mathbf{P}, which may be different on the two sides of the equation.
Now we consider Σ_{5}, i.e., a problem of the form $\exists(\forall \exists \exists \exists \mathbf{P})$.
By hypothesis, this is of form $\exists \exists \forall \exists \forall \mathbf{P}$. But two quantifiers of the same type can be brought together as a single quantifier.
So every Σ_{5}-problem is of the form $\exists \forall \exists \forall \mathbf{P}$ and so belongs to Σ_{4}. It follows that $\Sigma_{5}=\Sigma_{4}=\Pi_{4}$. Similarly, we get $\Pi_{5}=\Pi_{4}=\Sigma_{4}$.

Vertical Collapsibility

Corollary

If $\Sigma_{k}=\Sigma_{k+1}$, then $\mathbf{P H}=\Sigma_{k}$.

- We know that $\Sigma_{k} \subseteq \Pi_{k+1}$.

From $\Sigma_{k}=\Sigma_{k+1}$, we get $\Sigma_{k+1} \subseteq \Pi_{k+1}$.
But, by definition, $\Pi_{k+1}:=\mathbf{c o}-\Sigma_{k+1}$, whence, $\Sigma_{k+1}=\Pi_{k+1}$.
The Theorem implies that $\mathbf{P H}=\Sigma_{k+1}$.
By hypothesis, $\mathbf{P H}=\Sigma_{k}$.

Thank you!

- In closing...

Thank you for your Attention!!

