Oracle Turing Machines

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

Seminar Presentation
Lake Superior State University

George Voutsadakis (LSSU)

Oracle Turing Machines

Sault Sainte Marie, 2022 1 / 16

Oracle Turing Machines

- An oracle Turing machine is a Turing machine that has a special read-write tape, called oracle tape and three special states q_{query}, q_{yes} and q_{no} (not to be confused with q_{accept} and q_{reject}).
- The operation of *M*, in addition to the input language, needs a specification of a language O, the **oracle language**.
- Whenever, during its execution, *M* enters the state q_{query}, with *q* the contents of the oracle tape, then the machine moves into the state
 - q_{yes} if $q \in O$;
 - q_{no} if $q \notin O$.
- Regardless of the choice of O, a membership query to O counts as a single computational step.
- If M is an oracle machine, O⊆ {0,1}* a language and x ∈ {0,1}*, then the output of M on input x with oracle O is denoted M^O(x).
- Nondeterministic oracle Turing machines are defined similarly.

2 / 16

- For every O⊆ {0,1}*, P^O is the class of all languages that can be decided by a polynomial time deterministic Turing machine with oracle access to O.
- **NP**^O is the class of all languages that can be decided by a polynomial time nondeterministic Turing machine with oracle access to O.

Examples

- Suppose \overline{SAT} is the language of all unsatisfiable Boolean formulæ. Then $\overline{SAT} \in \mathbf{P}^{SAT}$.
- Let $O \in \mathbf{P}$. Then $\mathbf{P}^O = \mathbf{P}$.

Allowing an oracle may only help decide more languages.

- Hence, $\mathbf{P} \subseteq \mathbf{P}^{O}$.
- Suppose that $L \in \mathbf{P}^{O}$.

Consider the polynomial time Turing machine M with oracle O that computes L.

Transform it into a machine that operates like M except that, instead of querying the oracle, decides membership in O from scratch (in polynomial time).

This is a polynomial time deterministic Turing machine deciding L.

Thus, $L \in \mathbf{P}$ and $\mathbf{P}^O \subseteq \mathbf{P}$.

• Consider the language

EXPCOM = { $\langle M, x, 1^n \rangle$: M accepts x within 2^n steps}.

Then $\mathbf{P}^{\text{ExpCom}} = \mathbf{NP}^{\text{ExpCom}} = \mathbf{EXP} (:= \bigcup_{c} \mathbf{DTIME}(2^{n^{c}})).$

Using EXPCOM as an oracle allows performing exponential computations in a single step. So $\text{EXP} \subseteq \text{P}^{\text{ExpCom}}$.

Suppose M is a nondeterministic polynomial-time oracle Turing machine.

Exponential time is sufficient to:

- enumerate all *M*'s nondeterministic choices;
- answer all of EXPCOM's oracle queries.

Therefore, $\mathbf{NP}^{\mathrm{ExpCom}} \subseteq \mathbf{EXP}$.

Diagonalization and Relativization

- Several results in complexity separating classes rely on the method of "pure" diagonalization, a technique that relies solely on the following properties of Turing machines:
 - I The existence of an effective representation of Turing machines by strings;
 - II The ability of one Turing machine to simulate another without much overhead in running time or space.
- For any choice of oracle O, the set of all Turing machines with access to O satisfies properties I and II.
 - Turing machines with oracle O can be represented as strings;
 - The representation can be used to simulate such Turing machines by a universal Turing machine (having itself access to oracle O).
- It follows that any result about Turing machines or complexity classes that uses only I and II **relativizes**, i.e., holds also for the set of all Turing machines with oracle O.

The Baker, Gill, Solovay Theorem

The Baker, Gill, Solovay Theorem

There exist oracle languages A and B, such that $\textbf{P}^A=\textbf{N}\textbf{P}^A$ and $\textbf{P}^B\neq\textbf{N}\textbf{P}^B.$

- Let A = EXPCOM. We saw that $\mathbf{P}^A = \mathbf{NP}^A$.
- Let B be any language. Define

$$U_{\mathrm{B}} = \{1^n : (\exists y \in \mathrm{B})(|y| = n)\}.$$

 $U_B \in \textbf{NP}^B.$ The following polynomial time nondeterministic Turing machine with oracle B decides $U_B.$

On input *x*:

Check (in linear time) whether $x = 1^{|x|}$; If not, reject;

Guess in linear time $y \in \{0, 1\}^{|x|}$;

Query oracle whether $y \in B$;

If yes, accept; else reject.

The heart of the argument is to construct B, such that $U_B \notin \mathbf{P}^B$.

Stage-Wise Construction of B

For all *i*, let *M_i* be the oracle TM represented by *i* in binary.
 B is constructed in stages, where Stage *i* ensures that *M_i^B* does not decide U_B within ^{2ⁿ}/₁₀ steps (*n* depends on *i*).

Initialize $B = \emptyset$;

Stage *i*: Assume " \in B?" has been decided for finitely many strings. Choose *n* exceeding the length of all such strings.

Run M_i on 1^n for $\frac{2^n}{10}$ steps.

- If M_i queries the oracle on a decided string, answer consistently;
- Otherwise, declare that the string $\notin B$.

We have decided the fate of $\leq \frac{2^n}{10}$ strings of length *n*, all declared \notin B.

- If *M_i* accepts 1ⁿ, all remaining ^{9.2ⁿ}/₁₀ strings of length *n* are declared ∉ B. So 1ⁿ ∉ U_B.
- If M_i rejects 1ⁿ, pick a string x of length n not queried upon and declare x ∈ B. So 1ⁿ ∈ U_B.

We made sure that M_i does not decide U_B .

Since every polynomial is smaller than $\frac{2^n}{10}$ for large *n* and every Turing machine is represented by infinitely many strings, $U_B \notin \mathbf{P}^B$.

George Voutsadakis (LSSU)

- We saw that "pure" diagonalization relativizes.
- Since there are oracles A and B, relative to which $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N}\mathbf{P}^{B}$, "pure" diagonalization alone cannot resolve $\mathbf{P} \stackrel{?}{=} \mathbf{N}\mathbf{P}$.
- It is still possible that diagonalization, or a technique involving simulation, may be used to tackle P [?] = NP, but it has to use some fact about Turing machines that does not hold in the presence or oracles, i.e., that does not relativize.
 - That is, some property different from I and II must be added in the mix.

 $\bullet\,$ For a class ${\mathcal C}$ of languages, we set

$$\mathbf{P}^{\mathcal{C}} = \bigcup_{O \in \mathcal{C}} \mathbf{P}^{O} \quad \text{and} \quad \mathbf{N}\mathbf{P}^{\mathcal{C}} = \bigcup_{O \in \mathcal{C}} \mathbf{N}\mathbf{P}^{O}.$$

• We obviously have

 $NP \subseteq P^{NP}$ and $co-NP \subseteq P^{NP}$.

It is likely that

 $\mathsf{NP} \cup \mathsf{co}\mathsf{-}\mathsf{NP} \subsetneqq \mathsf{P}^{\mathsf{NP}}.$

However, if NP = P, then $P^{NP} = P$ and all three classes above would be identical.

The Polynomial Hierarchy via Oracles

• Let
$$\Sigma_1 := NP$$
, $\Pi_1 := co-NP$, and $\Delta_1 := P$.

For
$$k \ge 1$$
, let
• $\Sigma_{k+1} := \mathbf{NP}^{\Sigma_k}$;
• $\Pi_{k+1} := \mathbf{co} \cdot \Sigma_{k+1}$;
• $\Delta_{k+1} := \mathbf{P}^{\Sigma_k}$.

• The polynomial hierarchy **PH** is the union

$$\mathsf{PH} = \bigcup_{k \ge 1} \Sigma_k.$$

• It is also consistent to let $\Sigma_0 = \Pi_0 = \Delta_0 = \mathbf{P}$, and to extend the definition to all $k \ge 0$. Indeed we have, $\Sigma_1 = \mathbf{NP}$, $\Pi_1 = \mathbf{co} - \mathbf{NP}$ and $\Delta_1 = \mathbf{P}$.

Complexity Theoretic Hypotheses

- The conjecture that the classes of the polynomial hierarchy form a genuine hierarchy contains the conjecture that:
 - all the inclusions are strict inclusions;
 - the classes Σ_k and Π_k are incomparable with respect to set inclusion.
- Thus we obtain the following complexity theoretical hypotheses:
 - $\Sigma_k \neq \Sigma_{k+1}$;
 - $\Pi_k \neq \Pi_{k+1}$;
 - $\Sigma_k \neq \Pi_k$;
 - $\Delta_k \neq \Sigma_k \cap \Pi_k \neq \Sigma_k \neq \Sigma_k \cup \Pi_k \neq \Delta_{k+1}$.

Theorem

A decision problem L belongs to the class Σ_k if and only if there is a poly p and a decision problem $L' \in \mathbf{P}$, such that for $A = \{0, 1\}^{p(|x|)}$,

 $\mathbf{L} = \{x : (\exists y_1 \in A) (\forall y_2 \in A) (\exists y_3 \in A) \cdots (Qy_k \in A) (x, y_1, \dots, y_k) \in \mathbf{L'}\}.$

The quantifier Q is chosen to be an existential or universal quantifier in such a way that the sequence of quantifiers is alternating.

Using DeMorgan's Laws we obtain:

Corollary

A decision problem L is in Π_k if and only if there is a polynomial p and a decision problem $L' \in \mathbf{P}$, such that for $A = \{0, 1\}^{p(|x|)}$, then

$$\mathbf{L} = \{ x : (\forall y_1 \in A) (\exists y_2 \in A) \cdots (Qy_k \in A) (x, y_1, \dots, y_k) \in \mathbf{L}' \}.$$

Horizontal Collapsibility

Theorem

If $\Sigma_k = \Pi_k$, then $\mathbf{PH} = \Sigma_k$.

• We show that $\Sigma_k = \Pi_k$ implies $\Sigma_{k+1} = \Pi_{k+1} = \Sigma_k$.

The argument can be completed using induction on k. Let's look at the case k = 4. From the logical characterizations, $\Sigma_4 = \Pi_4$, means that $\exists \forall \exists \forall \mathbf{P} = \forall \exists \forall \exists \mathbf{P}$, where:

- Behind the quantifiers we may only have polynomially many variables;
- **P** stands for decision problems from **P**, which may be different on the two sides of the equation.

Now we consider Σ_5 , i.e., a problem of the form $\exists (\forall \exists \forall \exists \mathbf{P})$.

By hypothesis, this is of form $\exists \exists \forall \exists \forall \mathbf{P}$. But two quantifiers of the same type can be brought together as a single quantifier.

So every Σ_5 -problem is of the form $\exists \forall \exists \forall \mathbf{P}$ and so belongs to Σ_4 .

It follows that $\Sigma_5 = \Sigma_4 = \Pi_4$. Similarly, we get $\Pi_5 = \Pi_4 = \Sigma_4$.

Corollary

If $\Sigma_k = \Sigma_{k+1}$, then $\mathbf{PH} = \Sigma_k$.

We know that
$$\Sigma_k \subseteq \Pi_{k+1}$$
.
From $\Sigma_k = \Sigma_{k+1}$, we get $\Sigma_{k+1} \subseteq \Pi_{k+1}$.
But, by definition, $\Pi_{k+1} := \mathbf{co} \cdot \Sigma_{k+1}$, whence, $\Sigma_{k+1} = \Pi_{k+1}$.
The Theorem implies that $\mathbf{PH} = \Sigma_{k+1}$.
By hypothesis, $\mathbf{PH} = \Sigma_k$.

• In closing...

Thank you for your Attention!!

George Voutsadakis (LSSU)

Oracle Turing Machines

Sault Sainte Marie, 2022 16 / 16