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Parallel Random Access Machines

A parallel random access machine (PRAM) for n Boolean inputs
consists of:

p(n) processors Pi , 1 ≤ i ≤ p(n);
a read-only input tape of n cells M1, . . . ,Mn (or X1, . . . ,Xn) containing
the inputs x1, . . . , xn; and
a shared memory of cells Mj , n < j ≤ n+ c(n) (or Yj , j = 1, . . . , c(n)),
all containing at first zeros (c is the communication width).
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Operation of PRAMs

Pi starts in the state q(i , 0).

At time step t:

depending on its state q(i , t), Pi reads the contents of some cell Mj of
the shared memory;
depending on q(i , t) and the contents of Mj , it assumes a new state
q(i , t + 1); and
depending on q(i , t + 1), it writes some information into some cell of
the shared memory.

The PRAM computes fn ∈ Bn in time T (n) if the cell Mn+1 (i.e.,
Y1) of the shared memory contains on input x = (x1, . . . , xn) at time
step T (n) the output fn(x).
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Exclusivity vs. Concurrency

We distinguish between some models of PRAMs with different rules
for solving read and write conflicts:

An EREW PRAM (exclusive read, exclusive write) works correctly
only if, at any time step and for any cell, at most one processor reads
the contents of this cell and at most one processor writes into this cell.
A CREW PRAM (concurrent read, exclusive write), or, shortly,
PRAM allows that many processors read the contents of the same cell
at the same time step, but it works correctly only if at any time step
and for any cell at most one processor writes into this cell.
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Resolution of Write Conflicts

We distinguish between two more models of PRAMs with different
rules for solving read and write conflicts:

A CRCW PRAM (concurrent read, concurrent write), or, shortly,
WRAM solves write conflicts:

If more than one processor tries to write at time step t into cell Mj ,

then the processor with the smallest number wins.

This processor writes into Mj and all competitors fail to write.

A WRAM satisfies the common write rule (CO WRAM) if
whenever several processors are trying to write into a single cell at the
same time step, the values that they try to write are the same.
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WRAMs vs. CO WRAMs

It is obvious that a CO WRAM with p processors, communication
width c and time complexity t can be simulated by a WRAM with the
same p, c and t.

In fact, the only change needed is replacing the Memory Access Unit
by one that resolves write conflicts according to the processor index
priority rule.

Since competitors who are accessing the same memory location are
attempting to write identical bits, accepting the one written by the
winner would do as well as any other.

This guarantees correctness of the operation.
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Kucera’s Theorem

Kucera’s Theorem

A WRAM of p processors, communication width c and time complexity t

may be simulated by a CO WRAM of
(

p
2

)

processors, communication
width c + p and time complexity 4t.

The simulation is step-by-step.

We use processors Pj , 1 ≤ j ≤ p, for the simulation and Pij ,
1 ≤ i < j ≤ p, for some extra work.

Since Pj and Pij never work simultaneously,
(

p
2

)

processors are
sufficient if p ≥ 3.

Each computation step of the WRAM is simulated by 4 computation
steps of the CO WRAM.
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Kucera’s Simulation

At first the processors Pj , 1 ≤ j ≤ n, simulate the reading and the
internal computations of the WRAM.

Pj writes into the j-th extra cell of the shared memory the number of
that cell into which Pj likes to write.

In the following two steps:

Pij decides whether Pj loses a write conflict against Pi ;
Pij writes a mark # into the j-th extra cell iff Pj has lost a write
conflict against Pi .
This causes no conflict for CO WRAMs.

In the fourth step Pj reads whether it has lost a write conflict.

Only if Pj has not lost a write conflict, Pj simulates the write phase
of the WRAM.

This causes no write conflict at all.
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An Upper Bound for EREW PRAMs

Theorem

Assuming processors of arbitrary power, every f : {0, 1}n → {0, 1} can be
computed in time ⌈log n⌉+1 by an EREW PRAM having n processors and
communication width n.

Sketch of the proof (we take n = 8).

The goal is to compute f (x1, x2, . . . , x8), where xi is in Mi .

Processor P1 P2 P3 P4 P5 P6 P7 P8

Memory Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Step 0 x1 x2 x3 x4 x5 x6 x7 x8
Step 1 x1, x2 x2, x3 x3, x4 x4, x5 x5, x6 x6, x7 x7, x8 x8
Step 2 x1−4 x2−5 x3−6 x4−7 x5−8 x6−8 x7−8 x8
Step 3 f (x1−8) x2−7 x3−8 x4−8 x5−8 x6−7 x7−8 x8
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An Upper Bound for PRAMs

Theorem

Assuming processors with realistic power, every f : {0, 1}n → {0, 1} can
be computed in time ⌈log n⌉+ 2 by an PRAM having n · 2n processors and
communication width n · 2n.

We assume the function is presented in disjunctive normal form

f (x1, . . . , xn) =

k
∨

i=1

(ℓi ,1 ∧ · · · ∧ ℓi ,n).

Using the preceding algorithm the i -th group of n processors
(1 ≤ i ≤ 2n) can compute the value of the i -th conjunction with n

literals in ⌈log n⌉+ 1 steps.

In the last step, a processor having a disjunct evaluated to one, writes
a 1 in position Mn+1, which is prearranged to contain a 0.

George Voutsadakis (LSSU) PRAMS Sault Sainte Marie, 2022 10 / 12



An Upper Bound for CO WRAMs

Theorem

Assuming processors with realistic power, every f : {0, 1}n → {0, 1} can
be computed in 2 steps by an CO WRAM having n · 2n processors and
communication width 2n.

We assume the function is presented in conjunctive normal form

f (x1, . . . , xn) =

k
∧

i=1

(ℓi ,1 ∨ · · · ∨ ℓi ,n).

The i -th group of n processors (1 ≤ i ≤ 2n) can compute the value of
the i -th clause with n literals in a single step and store it to the i -th
memory location.

In the last step, each processor having a clause evaluated to zero,
writes a 0 in position Mn+1, which is prearranged to contain a 1.
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Thank you!

In closing...

Thank you for your Attention!!
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