Parallel Random Access Machines

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University
Seminar Presentation
Lake Superior State University

Parallel Random Access Machines

- A parallel random access machine (PRAM) for n Boolean inputs consists of:

- $p(n)$ processors $P_{i}, 1 \leq i \leq p(n)$;
- a read-only input tape of n cells M_{1}, \ldots, M_{n} (or X_{1}, \ldots, X_{n}) containing the inputs x_{1}, \ldots, x_{n}; and
- a shared memory of cells $M_{j}, n<j \leq n+c(n)$ (or $Y_{j}, j=1, \ldots, c(n)$), all containing at first zeros (c is the communication width).

Operation of PRAMs

- P_{i} starts in the state $q(i, 0)$.
- At time step t :
- depending on its state $q(i, t), P_{i}$ reads the contents of some cell M_{j} of the shared memory;
- depending on $q(i, t)$ and the contents of M_{j}, it assumes a new state $q(i, t+1)$; and
- depending on $q(i, t+1)$, it writes some information into some cell of the shared memory.
- The PRAM computes $f_{n} \in B_{n}$ in time $T(n)$ if the cell M_{n+1} (i.e., Y_{1}) of the shared memory contains on input $x=\left(x_{1}, \ldots, x_{n}\right)$ at time step $T(n)$ the output $f_{n}(x)$.

Exclusivity vs. Concurrency

- We distinguish between some models of PRAMs with different rules for solving read and write conflicts:
- An EREW PRAM (exclusive read, exclusive write) works correctly only if, at any time step and for any cell, at most one processor reads the contents of this cell and at most one processor writes into this cell.
- A CREW PRAM (concurrent read, exclusive write), or, shortly, PRAM allows that many processors read the contents of the same cell at the same time step, but it works correctly only if at any time step and for any cell at most one processor writes into this cell.

Resolution of Write Conflicts

- We distinguish between two more models of PRAMs with different rules for solving read and write conflicts:
- A CRCW PRAM (concurrent read, concurrent write), or, shortly, WRAM solves write conflicts:

If more than one processor tries to write at time step t into cell M_{j}, then the processor with the smallest number wins.
This processor writes into M_{j} and all competitors fail to write.

- A WRAM satisfies the common write rule (CO WRAM) if whenever several processors are trying to write into a single cell at the same time step, the values that they try to write are the same.

WRAMs vs. CO WRAMs

- It is obvious that a CO WRAM with p processors, communication width c and time complexity t can be simulated by a WRAM with the same p, c and t.
- In fact, the only change needed is replacing the Memory Access Unit by one that resolves write conflicts according to the processor index priority rule.
Since competitors who are accessing the same memory location are attempting to write identical bits, accepting the one written by the winner would do as well as any other.
This guarantees correctness of the operation.

Kucera's Theorem

Kucera's Theorem

A WRAM of p processors, communication width c and time complexity t may be simulated by a CO WRAM of $\binom{p}{2}$ processors, communication width $c+p$ and time complexity $4 t$.

- The simulation is step-by-step.

We use processors $P_{j}, 1 \leq j \leq p$, for the simulation and $P_{i j}$, $1 \leq i<j \leq p$, for some extra work.
Since P_{j} and $P_{i j}$ never work simultaneously, $\binom{p}{2}$ processors are sufficient if $p \geq 3$.
Each computation step of the WRAM is simulated by 4 computation steps of the CO WRAM.

Kucera's Simulation

- At first the processors $P_{j}, 1 \leq j \leq n$, simulate the reading and the internal computations of the WRAM.
P_{j} writes into the j-th extra cell of the shared memory the number of that cell into which P_{j} likes to write.
- In the following two steps:
- $P_{i j}$ decides whether P_{j} loses a write conflict against P_{i};
- $P_{i j}$ writes a mark \# into the j-th extra cell iff P_{j} has lost a write conflict against P_{i}.
This causes no conflict for CO WRAMs.
- In the fourth step P_{j} reads whether it has lost a write conflict.

Only if P_{j} has not lost a write conflict, P_{j} simulates the write phase of the WRAM.
This causes no write conflict at all.

An Upper Bound for EREW PRAMs

Theorem

Assuming processors of arbitrary power, every $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time $\lceil\log n\rceil+1$ by an EREW PRAM having n processors and communication width n.

- Sketch of the proof (we take $n=8$).

The goal is to compute $f\left(x_{1}, x_{2}, \ldots, x_{8}\right)$, where x_{i} is in M_{i}.

Processor	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}	P_{8}
Memory	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}	Y_{7}	Y_{8}
Step 0	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
Step 1	x_{1}, x_{2}	x_{2}, x_{3}	x_{3}, x_{4}	x_{4}, x_{5}	x_{5}, x_{6}	x_{6}, x_{7}	x_{7}, x_{8}	x_{8}
Step 2	x_{1-4}	x_{2-5}	x_{3-6}	x_{4-7}	x_{5-8}	x_{6-8}	x_{7-8}	x_{8}
Step 3	$f\left(x_{1-8}\right)$	x_{2-7}	x_{3-8}	x_{4-8}	x_{5-8}	x_{6-7}	x_{7-8}	x_{8}

An Upper Bound for PRAMs

Theorem

Assuming processors with realistic power, every $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time $\lceil\log n\rceil+2$ by an PRAM having $n \cdot 2^{n}$ processors and communication width $n \cdot 2^{n}$.

- We assume the function is presented in disjunctive normal form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{i=1}^{k}\left(\ell_{i, 1} \wedge \cdots \wedge \ell_{i, n}\right)
$$

Using the preceding algorithm the i-th group of n processors
$\left(1 \leq i \leq 2^{n}\right)$ can compute the value of the i-th conjunction with n literals in $\lceil\log n\rceil+1$ steps.
In the last step, a processor having a disjunct evaluated to one, writes
a 1 in position M_{n+1}, which is prearranged to contain a 0 .

An Upper Bound for CO WRAMs

Theorem

Assuming processors with realistic power, every $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in 2 steps by an CO WRAM having $n \cdot 2^{n}$ processors and communication width 2^{n}.

- We assume the function is presented in conjunctive normal form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{k}\left(\ell_{i, 1} \vee \cdots \vee \ell_{i, n}\right)
$$

The i-th group of n processors $\left(1 \leq i \leq 2^{n}\right)$ can compute the value of the i-th clause with n literals in a single step and store it to the i-th memory location.
In the last step, each processor having a clause evaluated to zero, writes a 0 in position M_{n+1}, which is prearranged to contain a 1 .

Thank you!

- In closing...

Thank you for your Attention!!

