Second-Order Logic and Graphs

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

Seminar Presentation
Lake Superior State University

George Voutsadakis (LSSU)

Second-Order Logic and Graphs

Sault Sainte Marie, 2022 1 / 14

 Consider the second-order expression (in the vocabulary of number theory)

$$\varphi = \exists P \forall x ((P(x) \lor P(x+1)) \land \neg (P(x) \land P(x+1))).$$

- It asserts the existence of a set P such that for all x either x ∈ P or x + 1 ∈ P but not both.
- φ is satisfied by N, the standard model of number theory: Just take P^N to be the set of even numbers.

Expressions in Second-Order Logic: Example 2

Consider the sentence

$$\exists P \forall x \forall y (P(x,y) \to G(x,y))$$

in the vocabulary of graph theory.

- It asserts the existence of a subgraph of graph G.
- It is a valid sentence, because any graph has at least one subgraph: Namely, itself (not to mention the empty subgraph...).

Expressions in Second-Order Logic

- A vocabulary $\Sigma = (\Phi, \Pi, r)$ consists of
 - A set Φ of **function symbols**;
 - A set Π of **relation symbols**;
 - A function r : Φ ∪ Π → IN assigning to each function and each relation symbol in Σ an arity (number of arguments).
- An expression of existential second-order logic over a vocabulary Σ = (Φ, Π, r) is of the form ∃Pφ, where φ is a first-order expression over the vocabulary Σ' = (Φ, Π ∪ {P}, r).
- That is, $P \notin \Pi$ is a new relational symbol of arity r(P).
- Intuitively, expression ∃Pφ says that there is a relation P such that φ holds.
- A model M appropriate for Σ satisfies ∃Pφ if there is a relation P^M ⊆ (U^M)^{r(P)} such that M, augmented with P^M to comprise a model appropriate for Σ', satisfies φ.

Capturing UNREACHABILITY

- Our next expression of second-order logic captures graph reachability.
- More precisely, it expresses unreachability, the complement of reachability:

$$\varphi(x,y) = \exists P(\forall u \forall v \forall w (P(u,u) \land (G(u,v) \to P(u,v)) \land ((P(u,v) \land P(v,w)) \to P(u,w)) \land \neg P(x,y))).$$

• $\varphi(x, y)$ states that there is a graph P such that:

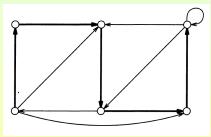
- it contains G as a subgraph;
- it is reflexive and transitive;
- in this graph there is no edge from x to y.
- It is easy to see that any P that satisfies the first two conditions must contain an edge between any two nodes of G that are reachable (i.e., it must contain the reflexive-transitive closure of G).
- Thus, $\neg P(x, y)$ implies that there is no path from x to y in G.
- φ(x, y)-GRAPHS (does a given graph satisfy φ(x, y)) is precisely the complement of REACHABILITY.

George Voutsadakis (LSSU)

The Problem HAMILTONPATH

- Existential second-order logic can be used to express graph-theoretic properties which, unlike REACHABILITY, have no known polynomial time algorithm.
- Consider the problem HAMILTONPATH:

Given a graph, is there a path that visits each node exactly once?



• Currently no polynomial time algorithm is known for telling whether a graph has a Hamilton path.

George Voutsadakis (LSSU)

Second-Order Logic and Graphs

Capturing HAMILTONPATH

- The following $\psi = \exists P\chi$ describes graphs with a Hamilton path.
- χ will require that P be a linear order on the nodes of G, i.e., a binary relationship isomorphic to < on the nodes of G (which may be taken to be {1,2,..., n}), such that consecutive nodes are connected in G.
 χ must require several things:
 - All distinct nodes of G be comparable by P:

 $\forall x \forall y (P(x, y) \lor P(y, x) \lor x = y).$

• *P* must be transitive but not reflexive:

 $\forall x \forall y \forall z (\neg P(x,x) \land ((P(x,y) \land P(y,z)) \rightarrow P(x,z))).$

• Any two consecutive nodes in *P* must be adjacent in *G*:

 $\forall x \forall y ((P(x, y) \land \forall z (\neg P(x, z) \lor \neg P(z, y))) \to G(x, y)).$

 It is easy to check that ψ-GRAPHS is the same as HAMILTONPATH. Any P with these properties must be a linear order, any two consecutive elements of which are adjacent in G.

George Voutsadakis (LSSU)

Theorem

For any existential second-order expression $\exists P\varphi$, the problem $\exists P\varphi$ -GRAPHS is in NP.

• Consider a graph G = (V, E) with *n* nodes.

If a relation $P^M \subseteq V^{r(P)}$ exists, such that G augmented with P^M satisfies φ , a nondeterministic Turing machine can "guess" such a relation.

The machine can then go on to test that indeed M satisfies the first-order expression φ deterministically in polynomial time.

The overall elapsed time for guessing and checking is polynomial, because there are at most $n^{r(P)}$ elements of P^M to guess.

• The expression $\varphi(x, y)$ for URREACHABILITY

$$\varphi(x,y) = \exists P(\forall u \forall v \forall w (P(u,u) \land (G(u,v) \to P(u,v)) \land ((P(u,v) \land P(v,w)) \to P(u,w)) \land \neg P(x,y))).$$

is in prenex normal form (all quantifiers at the front) with only universal first-order quantifiers, and with matrix in conjunctive normal form.

• More importantly, If we delete from the clauses of the matrix anything that is not an atomic expression involving *P*, we get:

$$P(u, u), \neg P(x, y), \neg P(u, v) \lor \neg P(v, w) \lor P(u, w).$$

• All three of these clauses have at most one unnegated atomic formula involving *P*.

UNREACHABILITY vs HAMILTONPATH (Cont'd)

- We call an expression in existential second-order logic a Horn expression if
 - it is in prenex form with only universal first-order quantifiers;
 - its matrix is the conjunction of clauses, each of which contains at most one unnegated atomic formula that involves *P*, the second-order relation symbol.
- In contrast, expression ψ for HAMILTONPATH contains a host of violations of the Horn form.
 - If it is brought into prenex form there will be existential quantifiers.
 - And $\forall x \forall y (P(x, y) \lor P(y, x) \lor x = y)$ is inherently non-Horn.

Horn Existential Second-Order Expressions and P

Theorem

For any Horn existential second-order expression $\exists P\varphi$, the problem $\exists P\varphi$ -GRAPHS is in P.

 Suppose ∃Pφ = ∃P∀x₁ ··· ∀x_kη, where η is a conjunction of Horn clauses and the arity of P is r. Let G be a given graph with vertex set {1,2,...,n}. The problem is to determine whether G is in ∃Pφ-GRAPHS, i.e., whether there exists P ⊆ {1,2...,n}^r, such that φ holds. Now we can rewrite ∃Pφ in the form

$$\bigwedge_{v_1,\ldots,v_k=1}^n \eta[x_1 \leftarrow v_1,\ldots,x_k \leftarrow v_k],$$

with exactly hn^k clauses, where h is the number of clauses in η .

Proof (Cont'd)

• The atomic expressions in

$$\bigwedge_{v_1,\ldots,v_k=1}^n \eta[x_1 \leftarrow v_1,\ldots,x_k \leftarrow v_k]$$

can only be of the forms $G(v_i, v_j)$, $v_i = v_j$ or $P(v_{i_1}, \ldots, v_{i_r})$.

- The first two kinds can be evaluated in constant time to TRUE or FALSE and disposed of:
 - If a literal is FALSE, it is deleted from a clause;
 - If a literal is TRUE, the clause is deleted;
 - If a clause becomes empty, then G does not satisfy φ .
- Now we are left with a conjunction of at most hn^k clauses, each of which is a disjunction of atomic expressions of the form $P(v_{i_1}, \ldots, v_{i_r})$ and their negations.

• The final step is to realize that each of these expressions can be independently TRUE or FALSE (since we are free to define *P* as we wish).

So we may as well replace each by a different Boolean variable, say

$$P(v_{i_1}, \ldots, v_{i_r})$$
 by $x^{v_{i_1}, \ldots, v_{i_r}}$.

Then we get a Boolean expression F, such that F is satisfiable if and only if there exists P, such that P, taken with G, satisfies φ .

Because of η 's form, F is a Horn Boolean expression with at most hn^k clauses and at most n^r variables.

But Horn Boolean expressions have a polynomial-time satisfiability problem in their length, and this finishes the proof.

• In closing...

Thank you for your Attention!!

George Voutsadakis (LSSU)

Second-Order Logic and Graphs

Sault Sainte Marie, 2022 14 / 14