Spanning Trees and the Determinant

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

Seminar Presentation

Lake Superior State University

Graphs and Spanning Trees

- A graph $G=(V, E)$ consists of
- A set V of vertices;
- A set E of 2-element subsets of V, called edges.

- The degree d_{i} of vertex i is the number of adjacent vertices.
- A spanning tree T of G is a subgraph that:
- spans the graph, i.e., that connects all vertices together;
- is a tree, i.e., contains no cycles.

The Problems \#SpanningTrees and Determinant

\#SpanningTrees: Given a graph G with n vertices, compute the number of spanning trees of G.

- We will see that the number of spanning trees of a graph can be written as the determinant of a version of its adjacency matrix.

Determinant: Given an $n \times n$ matrix A with integer entries, compute its determinant $\operatorname{det} A$.

- Suppose we could show that Determinant is in P, i.e., can be computed in time polynomial in the size of the input.
- Then, given a graph G :
- We could create the version of the adjacency matrix;
- Compute its determinant;
- This would give us the number of spanning trees.

So \#SpanningTrees would also be in P .

The Determinant

- Given a matrix $A=\left(a_{i j}\right)$, the determinant of A is defined by

$$
\operatorname{det} A=\sum_{\pi}(-1)^{\pi} \prod_{i=1}^{n} a_{i \pi(i)}
$$

- the sum is over all permutations π of n objects;
- $(-1)^{\pi}$ is -1 or +1 for odd or even permutations, respectively, i.e., those composed of an odd or even number of transpositions (2-element swaps), respectively.
- E.g., the permutations of 2 objects $\{1,2\}$:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right) \text { is even; } \\
& \left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \text { is odd. } \\
& \operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=a_{11} a_{22}-a_{12} a_{21} .
\end{aligned}
$$

3×3 Determinants

- The permutations of 3 objects $\{1,2,3\}$:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \text { are even; } \\
& \left(\begin{array}{llll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \text { are odd. }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{32} \\
a_{23} & a_{33}
\end{array}\right]= & a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32} .
\end{aligned}
$$

- We can also compute it by reducing to a sum of 32×2 determinants, called expansion in cofactors:

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} \\
a_{22} & a_{23} & a_{23}
\end{array}\right]=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right] \\
&+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{23}
\end{array}\right] \\
&=a_{11} \operatorname{det} A^{(1,1)}-a_{12} \operatorname{det} A^{(1,2)}+a_{13} \operatorname{det} A^{(1,3)} .
\end{aligned}
$$

Properties of the Determinant

- Multiplicativity: $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$;
- Linearity w.r.t. Rows: $\operatorname{det}\left[\begin{array}{c}r_{1} \\ r_{2}+a r_{2}^{\prime} \\ r_{3}\end{array}\right]=\operatorname{det}\left[\begin{array}{l}r_{1} \\ r_{2} \\ r_{3}\end{array}\right]+a \cdot \operatorname{det}\left[\begin{array}{l}r_{1} \\ r_{2}^{\prime} \\ r_{3}\end{array}\right]$.
- If two rows are identical, the determinant is zero: $\operatorname{det}\left[\begin{array}{l}r_{1} \\ r_{1} \\ r_{3}\end{array}\right]=0$.
- Switching rows only changes the sign: $\operatorname{det}\left[\begin{array}{c}r_{3} \\ r_{2} \\ r_{1}\end{array}\right]=-\operatorname{det}\left[\begin{array}{c}r_{1} \\ r_{2} \\ r_{3}\end{array}\right]$.
- Adding a multiple of one row to another row does not change the determinant: $\operatorname{det}\left[\begin{array}{c}r_{1} \\ r_{2}+r_{1} \\ r_{3}\end{array}\right]=\operatorname{det}\left[\begin{array}{c}r_{1} \\ r_{2} \\ r_{3}\end{array}\right]$.
- Upper diagonal matrices have determinant equal to the product of their diagonal entries: $\operatorname{det}\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33}\end{array}\right]=a_{11} a_{22} a_{33}$.

The Laplacian Matrix of a Graph

- Let $G=(V, E)$ be a graph with n vertices.
- The Laplacian matrix $L:=L(G)$ of G is defined by setting, for all $i, j=1, \ldots, n$,

$$
\ell_{i j}= \begin{cases}d_{i}, & \text { if } i=j \\ -1, & \text { if }\{i, j\} \in E \\ 0, & \text { otherwise }\end{cases}
$$

- E.g., consider the graph:

$$
L(G)=\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right] .
$$

- Note that in $L(G)$ each row and each column sums to 0 .

The Matrix-Tree Theorem

- Given a matrix A, we denote by $A^{(i, j)}$ the (i, j)-minor of A, i.e., the submatrix obtained from A by deleting the i-th row and the j-th column of A.

The Matrix-Tree Theorem

Let G be an undirected graph and $T(G)$ the number of spanning trees of G. For any $i, T(G)=\operatorname{det} L^{(i, i)}$, where L is the Laplacian of G.

- The proof is by induction on the number of vertices and the number of edges:

G

G-e

$G \cdot e$

- We note that for an edge e,

$$
T(G)=T(G-e)+T(G \cdot e) .
$$

- We create the minors of the Laplacians for $G, G-e$ and $G \cdot e$.
- We show that $\operatorname{det} L(G)^{(i, i)}=$ $\operatorname{det} L(G-e)^{(i, i)}+\operatorname{det} L(G \cdot e)^{(j, j)}$.

Example

- Consider the graph on the left below.

- Its Laplacian is

$$
L=\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 2 & 0 & -1 \\
-1 & 0 & 2 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right] .
$$

- Now we compute

$$
T(G)=\operatorname{det} L^{(1,1)}=\operatorname{det}\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & -1 \\
-1 & -1 & 3
\end{array}\right]=12-2-2=8 .
$$

Calculation of the Determinant

- The definition of $\operatorname{det} A(A$ an $n \times n$ matrix $)$ involves the sum of n ! products $(n!=1 \cdot 2 \cdots \cdots(n-1) \cdot n$ is the number of permutations of n objects).
So it takes roughly n ! time steps.
- Using the expansion in minors $\left(\operatorname{det} A=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A^{(i, j)}\right)$ requires a sum of n determinants each of size $(n-1) \times(n-1)$.
So it gives the recursion formula $f(n)=n f(n-1)$.
So, we get again an estimate for roughly n ! time.
- For an efficient calculation, we use the properties of the determinant that we have seen, together with the method of Gaussian elimination.

Example

- Recall the triangulation process using elementary row operations:

- The elementary row operations are effectuated by left multiplication by the corresponding elementary matrices:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & 1
\end{array}\right] A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & -1 \\
0 & 0 & 2
\end{array}\right]
$$

- Since determinants are multiplicative, the product of the determinants of the matrices on the left equals the determinant of the matrix on the right, i.e.,

$$
1 \cdot 1 \cdot \operatorname{det} A=8
$$

The Algorithm

Input: An $n \times n$ matrix A;
Output: $\operatorname{det} A$
For $j=1$ to $n-1$ (at stage j we cancel $a_{i j}$ for all $i>j$)
If necessary, swap the j-th row with another so that $a_{j j} \neq 0$; For all $i>j$

$$
r_{i}:=r_{i}-\frac{a_{i j}}{a_{j j}} r_{j} \text { (make the new value of } a_{i j} \text { is zero); }
$$

(Swaps have determinant -1 ; other moves have determinant 1.) $\operatorname{det} A$ is the product of the determinants of these moves, and the diagonal entries of the resulting upper-triangular matrix.

- The total number of row operations is at most $n+(n-1)+\cdots+3+2+1=\mathrm{O}\left(n^{2}\right)$.
- This algorithm consists of poly (n) arithmetic operations. Initially A 's entries have poly (n) digits.
So do all numerators and denominators occurring in the process.
Thus the total running time is polynomial.

Conclusions

- The problem Determinant is in P .
- The problem \#SpanningTrees is also in P
- In closing...

Thank you for your Attention!!

