Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. The following figure shows the graph of a function $y=f(x)$.

(a) Give using formal notation the end behavior of $y=f(x)$. From the end behavior identify the sign of the leading coefficient and the parity of the degree of $y=f(x)$
(b) Give the y-intercept. Give, also the x-intercepts with multiplicities using a small table. (All these must be given carefully as points.)
(c) Find a formula for the function $f(x)$ whose graph is shown.
2. (a) Perform the long division $\left(x^{5}+x^{3}-7\right) \div\left(x^{2}-2\right)$ and write your answer in the appropriate form.
(b) Suppose you are given that $x=-1$ is a zero of the polynomial

$$
f(x)=2 x^{3}+19 x^{2}-13 x-30
$$

Use the Factor Theorem to find the remaining zeros of $f(x)$.
3. Consider the function $f(x)=\frac{x^{2}+x-6}{x^{2}-3 x}$. Find all following features by hand.
(a) Find the domain $\operatorname{Dom}(f)$.
(b) Find the vertical asymptote(s) (explain).
(c) Find the horizontal asymptote (explain).
(c) Find the y-intercept showing all work and steps.
(d) Find the x-intercepts showing all work and steps.
4. Consider the function $f(x)$ whose graph is shown below. Find all following features by hand.

(a) Find the domain $\operatorname{Dom}(f)$.
(b) Find the vertical asymptote(s).
(c) Find the horizontal asymptote.
(c) Find the y-intercept.
(d) Find the x-intercept.
(e) Find a possible formula $y=f(x)$ for the graph shown. Explain how you are putting the various pieces together.
5. (a) A quantity y varies directly with a quantity z and with the square root of a quantity x. If $y=8$, when $x=16$ and $z=2$, find a relation of join variation between these quantities.
(b) A quantity y varies directly with the cube of x and inversely with the square of z. Suppose $y=4$, when $x=3$ and $z=6$.
(a) Find a relation of joint variation relating these quantities.
(ii) Find the value of x, when $z=3$ and $y=\frac{8}{3}$.

