Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Find an equation for the line that passes though the point $(-10,-1)$ and is perpendicular to the line passing through $(0,10)$ and $(20,5)$.
(b) Consider the quadratic function $f(x)=-x^{2}+6 x-8$. Answer the following questions "by hand", showing all work.

Find the location of the vertex.

State the opening direction, with a justification.

Find the y-intercept.

Find the x-intercepts.
2. (a) Find the domain of the function $f(x)=\frac{x^{2}-4}{x^{3}-4 x^{2}-5 x}$.
(b) Given $f(x)=\sqrt{x^{2}+2 x}$ and $g(x)=x-2$, find a formula for the composite $(f \circ g)(x)$ and simplify.
3. Let $f(x)$ be the function whose graph is shown below. Identify the following:

$$
f(1)=
$$

$$
\lim _{x \rightarrow 1^{-}} f(x)=
$$

$$
\lim _{x \rightarrow 1^{+}} f(x)=
$$

$$
\lim _{x \rightarrow 1} f(x)=
$$

$f(3)=$
$\lim _{x \rightarrow 3^{-}} f(x)=$
$\lim _{x \rightarrow 3^{+}} f(x)=$
$\lim _{x \rightarrow 3} f(x)=$
4. Calculate the following limit algebraically.
$\lim _{x \rightarrow 5} \frac{\frac{1}{x-2}-\frac{1}{3}}{5-x}=$
5. Consider the piecewise defined function

$$
f(x)=\left\{\begin{array}{ll}
\frac{x^{2}-6 x+5}{x^{2}-4 x+3}, & \text { if } x<1 \\
-\sqrt{x}+5, & \text { if } x \geq 1
\end{array} .\right.
$$

Find the following
$f(1)=$
$\lim _{x \rightarrow 1^{-}} f(x)=$
$\lim _{x \rightarrow 1^{+}} f(x)=$

From the following three statements, circle all that apply:
f is left continuous at $x=1 \quad f$ is right continuous at $x=1 \quad f$ is continuous at $x=1$

