Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Use the limit definition of the derivative to find $f^{\prime}(1)$ if $f(x)=\frac{1}{5 x-2}$.
2. Compute the following derivatives

$$
\left(x^{11}-3 \sqrt[3]{x}+\frac{7}{\sqrt[7]{x^{2}}}\right)^{\prime}=
$$

$$
\left[\left(x^{2}+4\right)^{3}(5 x-1)^{7}\right]^{\prime}=
$$

3. Find an equation for the tangent line to $f(x)=\frac{7 x+4}{2 x-1}$ at $x=3$.
4. A population of bacteria in a contaminated culture is modeled by

$$
P(t)=2+\frac{50}{t^{2}+1}
$$

in hundreds of individuals, where t is the day after the experiment began. Find the rate of change of the population three days after the start of the experiment (please, provide units).
5. Consider the polynomial function

$$
f(x)=-x^{3}+3 x^{2}+9 x .
$$

(a) Find $f^{\prime}(x)$ and the critical points.
(b) Create the sign table of the first derivative and summarize your findings regarding intervals of monotonicity (on which function is increasing/decreasing) and relative extrema (maxima and minima) in the last line of the table.
(c) Use the information shown on the table of Part (b) to roughly sketch the graph of $y=f(x)$. Be as neat as you can and make sure to label all important points.

