Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Solve the initial value problem

$$
(\ln y) y^{\prime}-t y=0, \quad y(6)=1, \quad y \geq 1 .
$$

2. Compute $T_{3}(x)$ if $f(x)=\sqrt{x}$ and $a=4$.
3. (a) Pick a method out of the table in the last page and use it to show that the following recursively defined sequence converges or diverges.

$$
b_{0}=1, \quad b_{n+1}=\frac{3}{n} b_{n} .
$$

(b) Pick a method out of the table in the last page and use it to show that the sequence diverges or, else, to find its limit. $a_{n}=\frac{2^{n+1}+4 \cdot 3^{n}}{5^{n}}, n \geq 1$.
4. Use one of the methods in the table to tell whether the series diverges or to find its limit.

$$
\sum_{n=1}^{\infty} \frac{2}{n(n+2)}
$$

5. Use one of the methods in the table to either show that the given series converges or that it diverges.
(a) $\sum_{n=4}^{\infty} \frac{\sqrt{n}}{n-3}$
(b) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}-\ln n}$

Pick one for each of the five parts in Problems 3-5 (must use all five). Explain all steps.

| Geometric | Monotone and Bounded | Telescopic | Comparison | Limit Comparison |
| :--- | :--- | :--- | :--- | :--- |

