EXAM 3 - MATH 310
YOUR NAME:

Thursday, March 30 George Voutsadakis

Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Solve the differential equation $y^{(4)}-y=-36 e^{-t}$.
2. In Parts (a) and (b), show how the following formulas are obtained from scratch:
(a) $\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)$
(b) $\mathcal{L}\left\{e^{c t} f(t)\right\}=F(s-c)$, where $F(s)=\mathcal{L}\{f(t)\}$.
3. Use Laplace transforms to solve the initial value problem

$$
y^{(4)}+4 y^{\prime \prime}=0, \quad y(0)=2, y^{\prime}(0)=-2, \quad y^{\prime \prime}(0)=-12, y^{\prime \prime \prime}(0)=16 .
$$

4. Consider the piece-wise defined function $f(t)=\left\{\begin{array}{ll}-1, & \text { if } 0 \leq t<2 \\ 6, & \text { if } 2 \leq t<5 \\ 1, & \text { if } t \geq 5\end{array}\right.$.
(a) Sketch the graph $y=f(t)$.
(b) Express $f(t)$ using unit step functions.
(c) Use the Laplace transform table to find $\mathcal{L}\{f(t)\}$.
5. Solve the initial value problem

$$
y^{\prime \prime}+2 y=u_{3}(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

