EXAM 4 - MATH 310 YOUR NAME: $\qquad$
Thursday, April 20 George Voutsadakis

Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Express the function $g(t)=\left\{\begin{array}{ll}\sin t, & \text { if } 0 \leq t<\pi \\ 0, & \text { if } t \geq \pi\end{array}\right.$ in terms of unit step functions.
(b) Find the solution of the given initial value problem, where $g(t)$ is the function given in Part (a).

$$
y^{\prime \prime}+3 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

2. Find the solution of the initial value problem

$$
y^{\prime \prime}+y=\delta(t-2 \pi) \cos t, \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

(Hint: Recall that $\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)$. .
3. Express the solution of the given initial value problem in terms of a convolution integral

$$
y^{\prime \prime}+4 y^{\prime}+4 y=g(t), \quad y(0)=2, \quad y^{\prime}(0)=-3 .
$$

4. (a) Find the eigenvalues and corresponding eigenvectors of the matrix $A=\left(\begin{array}{cc}2 & -1 \\ 3 & -2\end{array}\right)$.
(b) Find the general solution of the system of differential equations

$$
\left\{\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-x_{2}(t) \\
x_{2}^{\prime}(t) & =3 x_{1}(t)-2 x_{2}(t)
\end{aligned}\right\} .
$$

5. Solve the given initial value problem:

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{ll}
-2 & 1 \\
-5 & 4
\end{array}\right) \boldsymbol{x}, \quad \boldsymbol{x}(0)=\binom{1}{3} .
$$

