EXAM 4 - MATH 111 YOUR NAME:

Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Detect the transformations that lead from the graph of $f(x)=2^{x}$ to the graph of $g(x)=2^{3 x+1}+5$.

$$
\begin{aligned}
y=2^{x} & \longrightarrow \\
& \longrightarrow \\
& \longrightarrow y=2^{3 x+1}+5
\end{aligned}
$$

(b) The following is a the graph of a transform $y=f(x)$ of the exponential function with base 3. Find a possible formula for $y=f(x)$.

2. Consider the function $f(x)=\log _{\frac{1}{2}} x$.
(a) Use a small table of values to sketch the graph of $y=f(x)$.
(b) Detect the transformations that lead from $f(x)$ to $g(x)=3 \log _{\frac{1}{2}}(x+1)-2$.

$$
\begin{aligned}
y=\log _{\frac{1}{2}} x & \longrightarrow \\
& \longrightarrow \\
& \longrightarrow y=3 \log _{\frac{1}{2}}(x+1)-2 \quad(
\end{aligned}
$$

(c) Use Parts (a) and (b) to sketch the graph of $y=g(x)$ clearly labeling all important features.
3. The following graph shows a transform of the logarithm to base 7. Find a possible formula for it.

4. Fully expand or contract, as appropriate, showing all steps.
$\log \left(\frac{7(x+2)^{3}}{\sqrt{y}(z+2)}\right)=$
$7 \ln x-\frac{1}{3} \ln y+2 \ln (z+1)=$
5. Solve the following equations:
(a) $10 e^{8 x+3}+2=37$
(b) $\log x+\log (x-3)=1$.

