EXAM 4 - MATH 310 YOUR NAME:

Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Consider the function $f(x)= \begin{cases}-2, & \text { if } 0 \leq t<3, \\ 2 e^{3-t}, & \text { if } t \geq 3\end{cases}$
(a) Compute $\mathcal{L}\{f\}$ from scratch.
(b) Express $y=f(x)$ in terms of unit step functions and compute its Laplace transform using the table.
2. Solve the initial value problem

$$
y^{\prime \prime}-y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=2,
$$

where $f(t)$ is the function given in Problem 1.
(No hyperbolic functions are allowed in the solution.)
3. Consider the function $f(t)=d_{\tau}(t-5)$.
(a) Graph $y=f(t)$ and write a piece-wise expression for $f(t)$.
(b) Express $f(t)$ in terms of unit step functions and find $\mathcal{L}\{f\}$ using the table.
(c) Use Part (b) (without further recourse to tables) to find $\mathcal{L}\{\delta(t-5)\}$.
4. Use Laplace transforms to solve the initial value problem

$$
y^{\prime \prime}+14 y^{\prime}+49 y=3+5 \delta(t-2), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

5. Use Laplace transforms to solve the initial value problem

$$
y^{\prime \prime}-6 y^{\prime}+25 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

(Of course, the answer must be expressed using a convolution integral.)

