April 13, 2012 <Back to Index>
PAGE SPONSOR |
Sir Robert Alexander Watson-Watt, KCB, FRS, FRAeS (13 April 1892 – 5 December 1973) is considered by many to be the "inventor of radar". (The hyphenated name is used herein for consistency, although this was not adopted until he was knighted in 1942.) Development of radar, initially nameless, was first started elsewhere but greatly expanded on 1 September 1936 when Watson-Watt became Superintendent of a new establishment under the British Air Ministry, Bawdsey Research Station located in Bawdsey Manor, near Felixstowe, Suffolk. Work there resulted in the design and installation of aircraft detection and tracking stations called Chain Home along the East and South coasts of England in time for the outbreak of WWII in 1939. This system provided the vital advance information that helped the Royal Air Force win the Battle of Britain. Born in Brechin, Angus, Scotland, Watson-Watt was a descendant of James Watt, the famous engineer and inventor of the practical steam engine. After attending Damacre Primary School and Brechin High School, he was accepted to University College, Dundee (which was then part of the University of St Andrews but became the University of Dundee in 1967). He graduated with a BSc in engineering in 1912, and was offered an assistantship by Professor William Peddie. It was Peddie who encouraged him to study radio, or "wireless telegraphy" as it was then known. In 1916 Watson-Watt wanted a job with the War Office, but nothing obvious was available in communications. Instead he joined the Meteorological Office, who were interested in his ideas on the use of radio for the detection of thunderstorms. Lightning gives off a radio signal as it ionizes the air, and he planned on detecting this signal in order to warn pilots of approaching thunderstorms. His early experiments were successful in detecting the signal, and he quickly proved to be able to do so at long ranges. Two problems remained however. The first was locating the signal, and thus the direction to the storm. This was solved with the use of a directional antenna, which could be manually turned to maximize (or minimize) the signal, thus "pointing" to the storm. Once this was solved the equally difficult problem of actually seeing the fleeting signal became obvious, which he solved with the use of a cathode-ray oscilloscope with a long-lasting phosphor. Such a system represented a significant part of a complete radar system, and was in use as early as 1923. It would, however, need the addition of a pulsed transmitter and a method of measuring the time delay of the received radio echos, and that would in time come from work on ionosondes. At first he worked at the Wireless Station of Air Ministry Meteorological Office in Aldershot, England. In 1924 when the War Department gave notice that they wished to re-occupy their Aldershot site, he moved to Ditton Park near Slough in Berkshire. The National Physical Laboratory (NPL) already had a research station there. In 1927 they were amalgamated as the Radio Research Station, with Watson-Watt in charge. After a further re-organisation in 1933,
Watson-Watt became Superintendent of the Radio Department of NPL in Teddington. In 1934, the Air Ministry set up a committee chaired by Sir Henry Tizard to advance the state of the art of air defence in the UK. During World War I, the Germans had used Zeppelins as
long-range bombers over London and other cities and defences had
struggled to counter the threat. Since that time aircraft capabilities
had improved considerably, and existing weapons were unlikely to have
any effect on a raid. The
prospect of aerial bombardment of civilian areas was causing the
government anxiety with heavy bombers able to approach from altitudes
that anti-aircraft guns of the day were unable to reach. With
the enemy airfields only 20 minutes away, the bombers would have
dropped their bombs and be returning to base before the intercepting
fighters could get to altitude. The only solution would be to have
standing patrols of fighters in the air at all times, but with the
limited cruising time of a fighter this would require a gigantic
standing force. A plausible solution was urgently needed. Nazi Germany was rumored to have a "death-ray"
using radio waves that was capable of destroying towns, cities and
people. In January 1935, H.E. Wimperis, Director of Scientific Research
at the Air Ministry, asked Watson-Watt about the possibility of
building their version of a death-ray, specifically to be used against
aircraft.
Watson-Watt quickly returned a calculation carried out by his assistant, Arnold Wilkins,
showing that the device was impossible to construct, and fears of a
Nazi version soon vanished. However he also mentioned in the same
report: "Meanwhile attention is being turned to the still difficult,
but less unpromising, problem of radio detection and numerical
considerations on the method of detection by reflected radio waves will
be submitted when required." On 12 February 1935, Watson-Watt sent a secret memo of the proposed system to the Air Ministry, entitled Detection and location of aircraft by radio methods.
Although not as exciting as a death-ray, the concept clearly had
potential but the Air Ministry, before giving funding, asked for a
demonstration proving that radio waves could be reflected by an
aircraft. This was ready by 26 February and consisted of two receiving antennas located about ten km away from one of the BBC's shortwave broadcast stations at Daventry.
The two antennas were phased such that signals travelling directly from
the station cancelled themselves out, but signals arriving from other
angles were admitted, thereby deflecting the trace on a CRT indicator (passive radar). Such
was the secrecy of this test that only three people witnessed it:
Watson-Watt, his assistant Arnold Wilkins, and a single member of the
committee, A.P. Rowe. The demonstration was a success; on several occasions a clear signal was seen from a Handley Page Heyford bomber being flown around the site. Most importantly, the prime minister, Stanley Baldwin,
was kept quietly informed of radar's progress. On 2 April 1935,
Watson-Watt received a patent on a radio device for detecting and
locating an aircraft. In mid-May 1935, Wilkins left the Radio Research Station with a small party, including Edward George Bowen, to start further research at Orford Ness,
an isolated peninsula on the coast of the North Sea. By June they were
detecting aircraft at 27 km, which was enough for scientists and
engineers to stop all work on competing sound-based detection systems.
By the end of the year the range was up to 100 km, at which point
plans were made in December to set up five stations covering the
approaches to London. One of these stations was to be located on the coast near Orford Ness, and Bawdsey Manor was
selected to become the main centre for all radar research. In an effort
to put a radar defense in place as quickly as possible, Watson-Watt and
his team created devices using existing available components, rather
than creating new components for the project, and the team did not take
additional time to refine and improve the devices. So long as the
prototype radars were in workable condition they were put into
production. They soon conducted "full scale" tests of a fixed radar radio tower system that would soon be known as Chain Home, an early detection system that attempted to detect an incoming bomber by radio signals. The
tests were a complete failure, with the fighter only seeing the bomber
after it had passed its target. The problem was not the radar, but the
flow of information from trackers from the Observer Corps to the fighters, which took many steps and was very slow. Henry Tizard with Patrick Blackett and Hugh Dowding immediately
set to work on this problem, designing a 'command and control air
defence reporting system' with several layers of reporting that were
eventually sent to a single large room for mapping. Observers watching
the maps would then tell the fighter groups what to do via direct
communications. By
1937 the first three stations were ready and the associated system was
put to the test. The results were encouraging and an immediate order by
the government to commission an additional 17 stations was given,
resulting in a chain of fixed radar towers along the east and south
coast of England. By the start of World War II, 19 were ready to play a key part in the Battle of Britain,
and by the end of the war over 50 had been built. The Germans were
aware of the construction of Chain Home but were not sure of its purpose. They tested their theories with a flight of the Zeppelin LZ 130, but concluded the stations were a new long-range naval communications system. As early as 1936, it was realized that the Luftwaffe would
turn to night bombing if the day campaign did not go well, and
Watson-Watt had put another of the staff from the Radio Research
Station, Edward Bowen, in charge of developing a radar that could be
carried by a fighter. Night time visual detection of a bomber was good
to about 300 m,
and the existing Chain Home systems simply didn't have the accuracy
needed to get the fighters that close. Bowen decided that an airborne
radar should not exceed 90 kg (200 lb in weight, 8 ft³ (230 L)
in volume, and require no more than 500 watts of power. To reduce the
drag of the antennas the operating wavelength could not be much greater
than one m, difficult for the day's electronics. "AI" - Airborne
Interception, was perfected by 1940, and was instrumental in eventually
ending the Blitz of
1941. Bowen also fitted airborne radar to maritime patrol aircraft
(known in this application as "ASV" - Air to Surface Vessel) and this
eventually reduced the threat from submarines. In his English History 1914 - 1945, historian A.J.P. Taylor paid the highest of praise to Watson-Watt, Sir Henry Tizard and their associates who developed and put in place radar, crediting them with being fundamental to victory in World war II. In
July 1938 Watson-Watt left Bawdsey Manor and took up the post of
Director of Communications Development (DCD-RAE). In 1939 Sir George
Lee took over the job of DCD, and Watson-Watt became Scientific Advisor
on Telecommunications (SAT) to the Air Ministry, travelling to the USA in 1941 in order to advise them on the severe inadequacies of their air defense efforts illustrated by the Pearl Harbor attack. His contributions to the war effort were so significant that he was knighted in 1942. Ten
years after his knighthood, Watson-Watt was awarded £50,000 by
the British government for his contributions in the development of
radar. He established a practice as a consulting engineer. In the 1950s
moved to Canada. Later he lived in the USA, where he published Three Steps to Victory in 1958. Around 1958 he appeared as a mystery challenger on the American television program To Tell The Truth. On
one occasion, late in life, Watson-Watt reportedly was pulled over in
Canada for speeding by a radar-gun toting policeman. His remark was,
"Had I known what you were going to do with it I would never have
invented it!" He wrote an ironic poem ("Rough Justice") afterwards: Pity Sir Robert Watson-Watt, And thus, with others I can mention, His magical all-seeing eye but now by some ironic twist and bites, no doubt with legal wit, Watt was married on
20 July 1916 in Hammersmith, London, to Margaret Robertson, the daughter
of a draughtsman; they later divorced and he re-married in 1952 in Canada. He returned to Scotland in the 1960s. In 1966, at the age of 72, he proposed to Dame Katherine Trefusis-Forbes, who was 67 years old at the time and had also played a significant role in the Battle of Britain as the founding Air Commander of the Womens Auxiliary Air Force,
which supplied the radar-room operatives. They lived together in London
in the winter, and at "The Observatory" – Trefusis-Forbes' summer home
in Pitlochry, Perthshire, during the warmer months. They remained together until her death in 1971. Watson-Watt died in 1973, aged 81, in Inverness. Both are buried in the church yard of the Episcopal Church of the Holy Trinity at Pitlochry. |