October 04, 2013
<Back to Index>
This page is sponsored by:
PAGE SPONSOR
   

Kenichi Fukui (福井 謙 一 Fukui Ken'ichi, October 4, 1918 – January 9, 1998) was a Japanese chemist.

Kenichi Fukui was co-recipient of the Nobel Prize in Chemistry in 1981 with Roald Hoffmann, for their independent investigations into the mechanisms of chemical reactions. His prize winning work focused on the role of frontier orbitals in chemical reactions: specifically that molecules share loosely bonded electrons which occupy the frontier orbitals, that is the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO).

Fukui was the eldest of three sons of Ryokichi Fukui, a foreign trade merchant, and Chie Fukui. He was born in Nara, Japan. In his student days between 1938 and 1941, Fukui's interest was stimulated by quantum mechanics and Erwin Schrödinger's famous equation. He also had developed the belief that a breakthrough in science occurs through the unexpected fusion of remotely related fields.

In his autobiographical profile, published by the Nobel Foundation, Fukui reminisced, 'In my high school years, chemistry was not my favorite subject, but the most decisive occurrence in my education career came when my father asked the advice of Professor Gen-itsu Kita of the Kyoto Imperial University concerning the cause I should take.' On the advice of Kita, a personal friend of the elder Fukui, young Kenichi was directed to the Department of Industrial Chemistry, with which Kita was then affiliated. Following his graduation from Kyoto Imperial University in 1941, Fukui was engaged in the Army Fuel Laboratory of Japan during World War II. In 1943, he was appointed a lecturer in fuel chemistry at Kyoto Imperial University and began his career as an experimental organic chemist.

He was professor of physical chemistry at Kyoto University from 1951 to 1982, president of the Kyoto Institute of Technology between 1982 and 1988, and a member of the International Academy of Quantum Molecular Science and honorary member of the International Academy of Science.

In 1952, Fukui with his young collaborators T. Yonezawa and H. Shingu presented his molecular orbital theory of reactivity in aromatic hydrocarbons, which appeared in the Journal of Chemical Physics. At that time, his concept failed to garner adequate attention among chemists. Fukui observed in his Nobel lecture in 1981 that his original paper 'received a number of controversial comments. This was in a sense understandable, because for lack of my experiential ability, the theoretical foundation for this conspicuous result was obscure or rather improperly given.'

The frontier orbitals concept came to be recognized following the 1965 publication by Robert B. Woodward and Roald Hoffmann of the Woodward - Hoffmann stereoselection rules, which could predict the reaction rates between two reactants. These rules, depicted in diagrams, explain why some pairs react easily while other pairs do not. The basis for these rules lies in the symmetry properties of the molecules and especially in the disposition of their electrons. Fukui had acknowledged in his Nobel lecture that, 'It is only after the remarkable appearance of the brilliant work by Woodward and Hoffmann that I have become fully aware that not only the density distribution but also the nodal property of the particular orbitals have significance in such a wide variety of chemical reactions.'

What has been striking in Fukui's significant contributions is that he developed his ideas before chemists had access to large computers for modeling. Apart from exploring the theory of chemical reactions, Fukui's contributions to chemistry also include the statistical theory of gelation, organic synthesis by inorganic salts and polymerization kinetics.

In an interview to New Scientist magazine in 1985, Fukui had been highly critical on the practices adopted in Japanese universities and industries to foster science. He noted, "Japanese universities have a chair system that is a fixed hierarchy. This has its merits when trying to work as a laboratory on one theme. But if you want to do original work you must start young, and young people are limited by the chair system. Even if students cannot become assistant professors at an early age they should be encouraged to do original work." Fukui also admonished Japanese industrial research stating, "Industry is more likely to put its research effort into its daily business. It is very difficult for it to become involved in pure chemistry. There is a need to encourage long range research, even if we don't know its goal and if its application is unknown."