February 02, 2014 <Back to Index>
PAGE SPONSOR |
Jean - Baptiste Joseph Dieudonné Boussingault (2 February 1802 – 11 May 1887) was a French chemist who made significant contributions to agricultural science, petroleum science and metallurgy. Jean - Baptiste Boussingault - an agricultural scientist and chemist of importance - was born in Paris. After studying at the school of mines at Saint - Etienne he went to Alsace to work in the asphalt mines - a two year interlude that was to shape his contributions to science. Then, little more than twenty years old, he went to South America as a mining engineer on behalf of an English company. During the insurrection of the Spanish colonies he was attached to the staff of General Bolivar and traveled widely in the northern parts of the continent, climbing to a new highest altitude by a Western explorer on Chimborazo in the process. Contrary to earlier Encyclopaedia Britannica entries, his greatest contributions were in biological and related applied fields. Returning to France he married Adele Le Bel whose family had the concession to the asphalt mines where he had previously worked and it was in this period that he made his greatest discoveries. Later he became professor of chemistry at Lyon, and in 1839 was appointed to the chair of agricultural and analytical chemistry at the Conservatoire des Arts et Metiers in Paris. In 1848 he was elected to the National Assembly representing his adopted Alsace, where he sat as a Moderate republican. Three years later he was dismissed from his professorship on account of his political opinions, but so much resentment at this action was shown by scientific men in general, and especially by his colleagues, who threatened to resign in a body, that he was reinstated. He died in Paris. His first papers were concerned with agricultural and mining topics, and his sojourn in South America yielded a number of miscellaneous memoirs, on the cause of goitre in the Cordilleras, the gases of volcanoes, earthquakes, tropical rain, &c., which won the commendation of Alexander von Humboldt. From 1836 he devoted himself mainly to agricultural chemistry and animal and vegetable physiology, with occasional excursions into mineral chemistry. His work included papers on the quantity of nitrogen in different foods, the amount of gluten in different wheats, investigations on the question whether plants can assimilate free nitrogen from the atmosphere (which he answered in the negative and proposed the basis of what became known as the nitrogen cycle), the respiration of plants, the function of their leaves, the action and value of manures and chemical fertilizers, and other similar subjects. In 1839, he was elected a foreign member of the Royal Swedish Academy of Sciences. Through his wife Adele Le Bel he had a share in an estate at Pechelbronn in Alsace,
where he carried out many agricultural experiments on what is
considered to be the first agricultural experimental station (as
defined in terms of scientific experimentation on a field basis). He
collaborated with Jean Baptiste Dumas in writing an Essai de statique chimique des ltres organists (1841), and was the author of Traite d'economie rurale (1844), which was remodelled as Agronomie, chimie agricole, et physiologie (5 vols., 1860 - 1874; 2nd ed., 1884), and of Etudes sur la transformation du fer en acier (1875). His
experimental station did not survive him, or rather could not withstand
the vacillations of the 1870 Franco - Prussian war despite some revealing
respect for intellectual works in WWII anecdotes, but his discoveries
were built on by others, including his better known contemporary,
Liebig – who loudly acknowledged Boussingault as the pioneer and great
discover of many advances in soil and plant chemistry. The
site of his, the world’s first agricultural experimental station, is
today a grand Alsatian grange and outbuilding complex in north - eastern
France in urgent need of restoration. As of April 2011, an
explanatory panel explaining his work has been erected
correcting some earlier misunderstanding that his experimental work was
conducted at another site in the town of Pechelbronn where he
maintained a house. The confusion is understandable as the history of
the area is dominated by the petroleum technologies developed in that
industry, and to which Boussingault contributed as part of his
employment in the region. The shadow cast over his work by this more
popular subject has led to his status being neglected beyond a cadre of
informed scientists and scientific historians. Boussingault
re-introduced the quantitative methods first employed by de Saussure
and is credited with the following main discoveries related to
agriculture, as well as others in fields of petroleum and metallurgy.
In agriculture, discoveries include: 1. the first analysis of crops grown in a rotation; 2. the increase in soil nitrogen following the growth of legume crops; 3. the theory (later confirmed by Persoz) that the carbohydrate fraction of a food ration is metabolized to fat in herbivores; 4.
plant growth is proportional to the amount of available assimilatory
nitrogen, which in practical terms allows greater plant growth from the
simultaneous application of phosphorus and nitrogen; 5. definition of the photosynthetic quotient. The
Petroleum Museum of Pechelbronn contains only two notes about
Boussingault, but among its
volunteers is a knowledgeable researcher M. Daniel Rodier who maintains
archives of all available information about Boussingault, and who has
overseen the historic markers at the experimental farm site. McCosh’s
book remains the most comprehensive source in English, while Aulie’s
Ph.D. thesis from Yale University is the most authoritative on the
subject of Boussingault’s nitrogen cycle. A new three volume series (in
French) entitled ‘Les pionniers de l' or noir de Pechelbronn’ by
Jean - Claude Streicher is in the process of preparation covering the
scientific developments in the region. Great
scientists are sometimes remembered for their less significant
discoveries. In the case of Boussingault, most popular literature lists
him as a contributor to the petroleum development of Alsace, and as one
of the few outsiders marrying into the industrialist Le Bel family that
they accepted in the long term. However,
it is today possible to place Boussingault in a cyclical context as
befits his contributions to our knowledge of ecological cycles. For it
was his early conjectures, while working on both petroleum and farming
problems, that led to an understanding of the critical role of nitrogen
in plant growth and thereby gave the necessary fillip to agricultural
production that has forestalled major food shortages up to the present
day. It therefore seems fitting that the harnessing of essential
nitrogen from the atmosphere into a chemical form accessible to plants
is today a major product of the petroleum industry through the
Haber - Bosch process. From a petroleum researcher came essential
knowledge for agriculture, which today is supported by a nitrogen
fertilizer product unforeseeable in Boussingault’s day from the modern
petroleum industry, urea and its ammonium relatives. We eat today from
the science that has built on the theoretical insights and
experimentation of Boussingault. |