July 04, 2017 <Back to Index>
PAGE SPONSOR |
Nicolaus Copernicus (German: Nikolaus Kopernikus; Italian: Nicolò Copernico; Polish: Mikołaj Kopernik; in his youth, Niclas Koppernigk; 19 February 1473 – 24 May 1543) was a Renaissance astronomer and the first person to formulate a comprehensive heliocentric cosmology which displaced the Earth from the center of the universe. Copernicus' epochal book, De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres), published just before his death in 1543, is often regarded as the starting point of modern astronomy and the defining epiphany that began the scientific revolution. His heliocentric model, with the Sun at the center of the universe, demonstrated that the observed motions of celestial objects can be explained without putting Earth at rest in the center of the universe. His work stimulated further scientific investigations, becoming a landmark in the history of science that is often referred to as the Copernican Revolution. Among the great polymaths of the Renaissance, Copernicus was a mathematician, astronomer, jurist with a doctorate in law, physician, quadrilingual polyglot, classics scholar, translator, artist, Catholic cleric, governor, diplomat and economist. Nicolaus Copernicus was born on 19 February 1473 in the city of Toruń, in the province of Royal Prussia, in the Crown of the Kingdom of Poland. His father was a merchant from Kraków and his mother was the daughter of a wealthy Toruń merchant. Nicolaus was the youngest of four children. His brother Andreas (Andrew) became an Augustinian canon at Frombork (Frauenburg). His sister Barbara, named after her mother, became a Benedictine nun and, in her final years (she died after 1517), prioress of a convent in Chełmno (Culm, Kulm). His sister Katharina married the businessman and Toruń city councilor Barthel Gertner and left five children, whom Copernicus looked after to the end of his life. Copernicus never married or had children. "Towards
the close of 1542, he was seized with apoplexy and paralysis." He died
on 24 May 1543, on the day that he was presented with an advance copy of
his De revolutionibus orbium coelestium. The father’s family can be traced to a village in Silesia near Nysa (Neiße). The village's name has been variously spelled Kopernik, Köppernig, Köppernick, and today Koperniki. In the 14th century, members of the family began moving to various other Silesian cities, to the Polish capital, Kraków (Cracow, 1367), and to Toruń (1400). The father, likely the son of Jan, came from the Kraków line. Nicolaus was named after his father, who appears in records for the first time as a well - to - do merchant who dealt in copper, selling it mostly in Danzig (Gdańsk). He moved from Kraków to Toruń around 1458. Toruń, situated on the Vistula River, was at that time embroiled in the Thirteen Years' War (1454 – 66), in which the Kingdom of Poland and the Prussian Confederation, an alliance of Prussian cities, gentry and clergy, fought the Teutonic Order over control of the region. In this war Hanseatic cities like Danzig (Gdańsk) and Thorn (Toruń), the hometown of Nicolaus Copernicus, chose to support the Polish king, who promised to respect the cities' traditional vast independence, which the Teutonic Order had challenged. The father of Nicolaus was actively engaged in the politics of the day, and supported Poland and the cities against the Teutonic Order. In 1454 he mediated negotiations between Poland’s Cardinal Zbigniew Oleśnicki and the Prussian cities for repayment of war loans. In the Second Peace of Thorn (1466), the Teutonic Order formally relinquished all claims to its western provinces, which as Royal Prussia remained a region of Poland for the next 300 years. The
father married Barbara Watzenrode, the astronomer's mother, between
1461 and 1464. He died sometime between 1483 and 1485. Upon the father’s death, young Nicolaus’ maternal uncle, Lucas Watzenrode the Younger (1447 – 1512), took the boy under his protection and saw to his education and career. Nicolaus’ mother, Barbara Watzenrode, was the daughter of Lucas Watzenrode the Elder and his wife Katherine (née Modlibóg). Not much is known about her life, but she is believed to have died when Nicolaus was a small boy. The Watzenrodes had come from the Świdnica (Schweidnitz) region of Silesia and had settled in Toruń after 1360, becoming prominent members of the city’s patrician class. Through the Watzenrodes' extensive family relationships by marriage, they were related to wealthy families of Toruń, Danzig and Elbląg (Elbing), and to the prominent Czapski, Działyński, Konopacki and Kościelecki noble families. The Modlibógs (literally, in Polish, "Pray to God") were a prominent Roman Catholic Polish family who had been well known in Poland's history since 1271. Lucas and Katherine had three children: Lucas Watzenrode the Younger, who would become Copernicus' patron; Barbara, the astronomer's mother; and Christina, who in 1459 married the merchant and mayor of Toruń, Tiedeman von Allen. Lucas Watzenrode the Elder was well regarded in Toruń as a devout man and honest merchant, and he was active politically. He was a decided opponent of the Teutonic Knights and an ally of Polish King Casimir IV Jagiellon. In 1453 he was the delegate from Toruń at the Grudziądz (Graudenz) conference that planned to ally the cities of the Prussian Confederation with Casimir IV in their subsequent war against the Teutonic Knights. During the Thirteen Years' War that ensued the following year, he actively supported the war effort with substantial monetary subsidies, with political activity in Toruń and Danzig, and by personally fighting in battles at Łasin (Lessen) and Marienburg (Malbork). He died in 1462. Lucas Watzenrode the Younger, the astronomer's maternal uncle and patron, was educated at the University of Krakow (now Jagiellonian University) and at the universities of Cologne and Bologna. He was a bitter opponent of the Teutonic Order and its Grand Master, who once referred to Watzenrode as “the devil incarnate.” In 1489 Watzenrode was elected Bishop of Warmia (Ermeland,
Ermland) against the preference of King Casimir IV, who had hoped to
install his own son in that seat. As a result, Watzenrode quarreled with
the king until Casimir IV’s death three years later. Watzenrode was then able to form close relations with three successive Polish monarchs: John I Albert, Alexander Jagiellon, and Sigismund I the Old.
He was a friend and key advisor to each ruler, and his influence
greatly strengthened the ties between Warmia and Poland proper. Watzenrode
came to be considered the most powerful man in Warmia, and his wealth,
connections and influence allowed him to secure Copernicus’ education
and career as a canon at Frombork (Frauenberg) Cathedral. Copernicus is postulated to have spoken Latin, German, and Polish with equal fluency. He also spoke Greek and Italian. The vast majority of Copernicus’ surviving works are in Latin, which in his lifetime was the language of academia in Europe. Latin was also the official language of the Roman Catholic Church and of Poland's royal court, and thus all of Copernicus’ correspondence with the Church and with Polish leaders was in Latin. There
survive a few documents written by Copernicus in German. Martin Carrier
mentions this as a reason to consider Copernicus’ native language to
have been German. Other arguments are that Copernicus was born in a predominantly German speaking town and that, while studying law at Bologna in 1496, he signed into the German natio (Natio Germanorum) — a
student organization which, according to its 1497 by-laws, was open to
students of all kingdoms and states whose mother tongue ("Muttersprache") was German. However, according to French philosopher Alexandre Koyre,
this in itself does not imply that Copernicus considered himself
German, since students from Prussia and Silesia were routinely placed in
that category, which carried certain privileges that made it a natural
choice for German speaking students, regardless of their ethnicity or
self - identification. In Copernicus’ day, people were often called after the places where they lived. Like the Silesian village that inspired it, Copernicus’ surname has been spelled variously. Today the English speaking world knows the astronomer principally by the Latinized name, "Nicolaus Copernicus." The surname likely had something to do with the local Silesian copper mining industry, though some scholars assert that it may have been inspired by the dill plant (in Polish, "koperek" or "kopernik") that grows wild in Silesia. As was to be the case with William Shakespeare a century later, numerous spelling variants of the name are documented for the astronomer and his relatives. The name first appeared as a place name in Silesia in the 13th century, where it was spelled variously in Latin documents. Copernicus "was rather indifferent about orthography." During his childhood, the name of his father (and thus of the future astronomer) was recorded in Toruń as Niclas Koppernigk around 1480. At Kraków he signed his name "Nicolaus Nicolai de Torunia." At Bologna in 1496, he registered in the Matricula Nobilissimi Germanorum Collegii resp. Annales Clarissimae Nacionis Germanorum of the Natio Germanica Bononiae as Dominus Nicolaus Kopperlingk de Thorn – IX grosseti. At Padua, Copernicus signed his name "Nicolaus Copernik", later as "Coppernicus." He signed a self - portrait, a copy of which is now at Jagiellonian University, "N Copernic." The astronomer Latinized his name to Coppernicus, generally with two "p"s (in 23 of 31 documents studied), but later in life he used a single "p". On the title page of De revolutionibus, Rheticus published the name as (in the genitive, or possessive, case) "Nicolai Copernici". Copernicus' uncle Watzenrode maintained contacts with the leading intellectual figures in Poland and was a friend of the influential Italian born humanist and Kraków courtier, Filippo Buonaccorsi. Watzenrode seems first to have sent young Copernicus to the St. John's School at Toruń where he himself had been a master. Later, according to Armitage (some scholars differ), the boy attended the Cathedral School at Włocławek, up the Vistula River from Toruń, which prepared pupils for entrance to the University of Krakow, Watzenrode's alma mater in Poland's capital. In the winter semester of 1491 – 92 Copernicus, as "Nicolaus Nicolai de Thuronia," matriculated together with his brother Andrew at the University of Krakow (now Jagiellonian University). Copernicus began his studies in the Department of Arts (from the fall of 1491, presumably until the summer or fall of 1495) in the heyday of the Kraków astronomical - mathematical school, acquiring the foundations for his subsequent mathematical achievements. According to a later but credible tradition (Jan Brożek), Copernicus was a pupil of Albert Brudzewski, who by then (from 1491) was a professor of Aristotelian philosophy but taught astronomy privately outside the university; Copernicus became familiar with Brożek's widely read commentary to Georg von Peuerbach's Theoricæ novæ planetarum and almost certainly attended the lectures of Bernard of Biskupie and Wojciech Krypa of Szamotuły and probably other astronomical lectures by Jan of Głogów, Michael of Wrocław, Wojciech of Pniewy and Marcin Bylica of Olkusz. Copernicus' Kraków studies gave him a thorough grounding in the mathematical - astronomical knowledge taught at the university (arithmetic, geometry, geometric optics, cosmography, theoretical and computational astronomy), a good knowledge of the philosophical and natural science writings of Aristotle (De coelo, Metaphysics) and Averroes (which later would play an important role in shaping his theory), stimulated his interest in learning, and made him conversant with humanistic culture. Copernicus broadened the knowledge that he took from the university lecture halls with independent reading of books that he acquired during his Kraków years (Euclid, Haly Abenragel, the Alfonsine Tables, Johannes Regiomontanus' Tabulae directionum); to this period, probably, also date his earliest scientific notes, now preserved partly at Uppsala University. At Kraków Copernicus began collecting a large library on astronomy; it would later be carried off as war booty by the Swedes during the Deluge and is now at the Uppsala University Library. Copernicus' four years at Kraków played an important role in the development of his critical faculties and initiated his analysis of the logical contradictions in the two most polular systems of astronomy — Aristotle's theory of homocentric spheres, and Ptolemy's mechanism of eccentrics and epicycles — the surmounting and discarding of which constituted the first step toward the creation of Copernicus' own doctrine of the structure of the universe. Without taking a degree, probably in the fall of 1495, Copernicus left Kraków for the court of his uncle Watzenrode, who in 1489 had been elevated to Prince - Bishop of Warmia and soon (after November 1495) sought to place his nephew in a Warmia canonry vacated by 26 August 1495 death of its previous tenant. For unclear reasons — probably due to opposition from part of the chapter, who appealed to Rome — Copernicus' installation was delayed, inclining Watzenrode to send both his nephews to study law in Italy, seemingly with a view to furthering their ecclesiastic careers and thereby also strengthening his own influence in the Warmia chapter. Leaving Warmia in mid 1496 — possibly with the retinue of the chapter's chancellor, Jerzy Pranghe, who was going to Italy — in the fall (October?) of that year Copernicus arrived in Bologna and a few months later (after 6 January 1497) signed himself into the register of the Bologna University of Jurists' "German nation," which also included Polish youths from Silesia, Prussia and Pomerania as well as students of other nationalities. It
was only on 20 October 1497 that Copernicus, by proxy, formally
succeeded to the Warmia canonry, which had been granted to him two years
earlier. To this, by a document dated 10 January 1503 at Padua, he would add a sinecure at the Collegiate Church of the Holy Cross in Wrocław (Breslau), Silesia, Bohemia. Despite having received a papal indult on 29 November 1508 to receive further benefices, through his ecclesiastic career Copernicus not only did not acquire further prebends and higher stations (prelacies)
at the chapter, but in 1538 he relinquished the Wrocław sinecure. It is
uncertain whether he was ordained a priest; he may only have taken minor orders, which sufficed for assuming a chapter canonry. During his three year stay at Bologna, between fall 1496 and spring 1501, Copernicus seems to have devoted himself less keenly to studying canon law (he received his doctorate in law only after seven years, following a second return to Italy in 1503) than to studying the humanities -- probably attending lectures by Filippo Beroaldo, Antonio Urceo, called Codro, Giovanni Garzoni and Alessandro Achillini -- and to studying astronomy. He met the famous astronomer Domenico Maria Novara da Ferrara and became his disciple and assistant. Copernicus was developing new ideas inspired by reading the "Epitome of the Almagest" (Epitome in Almagestum Ptolemei) by George von Peuerbach and Johannes Regiomontanus (Venice, 1496). He verified its observations about certain peculiarities in Ptolemy's theory of the Moon's motion, by conducting on 9 March 1497 at Bologna a memorable observation of Aldebaran, the brightest star in the Taurus constellation, whose results reinforced his doubts as to the geocentric system. Copernicus the humanist sought confirmation for his growing doubts through close reading of Greek and Latin authors (Pythagoras, Aristarchos of Samos, Cleomedes, Cicero, Pliny the Elder, Plutarch, Philolaus, Heraclides, Ecphantos, Plato), gathering, especially while at Padua, fragmentary historic information about ancient astronomical, cosmological and calendar systems. Copernicus spent the jubilee year 1500 in Rome, where he arrived with his brother Andrew that spring, doubtless to perform an apprenticeship at the Papal Curia. Here, too, however, he continued his astronomical work begun at Bologna, observing, for example, a lunar eclipse on the night of 5–6 November 1500. According to a later account by Rheticus, Copernicus also — probably privately, rather than at the Roman Sapienza -- as a "Professor Mathematum" (professor of astronomy) delivered, "to numerous... students and... leading masters of the science," public lectures devoted probably to a critique of the mathematical solutions of contemporary astronomy. On his return journey doubtless stopping briefly at Bologna, in mid 1501 Copernicus arrived back in Warmia. After on 28 July receiving from the chapter a two year extension of leave in order to study medicine (since "he may in future be a useful medical advisor to our Reverend Superior [Bishop Lucas Watzenrode] and the gentlemen of the chapter"), in late summer or in the fall he returned again to Italy, probably accompanied by his brother Andrew and by Canon B. Sculteti. This time he studied at the University of Padua, famous as a seat of medical learning, and — except for a brief visit to Ferrara in May – June 1503 to pass examinations for, and receive, his doctorate in canon law — he remained at Padua from fall 1501 to summer 1503. Copernicus studied medicine probably under the direction of leading Padua professors — Bartolomeo da Montagnana, Girolamo Fracastoro, Gabriele Zerbi, Alessandro Benedetti — and read medical treatises that he acquired at this time, by Valescus de Taranta, Jan Mesue, Hugo Senensis, Jan Ketham, Arnold de Villa Nova, and Michele Savonarola, which would form the embryo of his later medical library. One of the subjects that Copernicus must have studied was astrology, since it was considered an important part of a medical education. However, unlike most other prominent Renaissance astronomers, he appears never to have practiced or expressed any interest in astrology. As at Bologna, Copernicus did not limit himself to his official studies. It was probably the Padua years that saw the beginning of his Hellenistic interests. He familiarized himself with Greek language and culture with the aid of Theodorus Gaza's grammar (1495) and J.B. Chrestonius' dictionary (1499), expanding his studies of antiquity, begun at Bologna, to the writings of Bessarion, J. Valla and others. There also seems to be evidence that it was during his Padua stay that there finally crystallized the idea of basing a new system of the world on the movement of the Earth. As
the time approached for Copernicus to return home, in spring 1503 he
journeyed to Ferrara where, on 31 May 1503, having passed the obligatory
examinations, he was granted the degree of doctor of canon law. No
doubt it was soon after (at latest, in fall 1503) that he left Italy for
good to return to Warmia. Having completed all his studies in Italy, 30 year old Copernicus returned to Warmia, where – apart from brief journeys to Kraków and to nearby Prussian cities (Toruń, Gdańsk, Elbląg, Grudziądz, Malbork, Königsberg) – he would live out the remaining 40 years of his life. The Prince - Bishopric of Warmia enjoyed substantial autonomy, with its own diet (parliament), army, monetary unit (the same as in the other parts of Royal Prussia) and treasury. Copernicus
was his uncle's secretary and physician from 1503 to 1510 (or perhaps
till that uncle's death on 29 March 1512) and resided in the Bishop's castle at Lidzbark Warmiński (Heilsberg),
where he began work on his heliocentric theory. In his official
capacity, he took part in nearly all his uncle's political, ecclesiastic
and administrative - economic duties. From the beginning of 1504,
Copernicus accompanied Watzenrode to sessions of the Royal Prussian diet
held at Malbork and Elbląg and,
write Dobrzycki and Hajdukiewicz, "participated... in all the more
important events in the complex diplomatic game that that ambitious
politician and statesman played in defense of the particular interests
of Prussia and Warmia, between hostility to the [Teutonic] Order and
loyalty to the [Polish] Crown." In 1504 – 12 Copernicus made numerous journeys as part of his uncle's retinue — in 1504, to Toruń and Gdańsk (Danzig), to a session of the Royal Prussian Council in the presence of Poland's King Alexander Jagiellon; to sessions of the Prussian diet at Malbork (1506), Elbląg (1507) and Sztum (1512); and he may have attended a Poznań session (1510) and the coronation of Poland's King Sigismund I the Old in Kraków (1507). Watzenrode's itinerary suggests that in spring 1509 Copernicus may have attended the Krakówsejm. It was probably on the latter occasion, in Kraków, that Copernicus submitted for printing at Jan Haller's press his translation, from Greek to Latin, of a collection, by the 7th century Byzantine historian Theophylact Simocatta, of 85 brief poems called Epistles, or letters, supposed to have passed between various characters in a Greek story. They are of three kinds — "moral," offering advice on how people should live; "pastoral," giving little pictures of shepherd life; and "amorous," comprising love poems. They are arranged to follow one another in a regular rotation of subjects. Copernicus had translated the Greek verses into Latin prose, and he now published his version as Theophilacti scolastici Simocati epistolae morales, rurales et amatoriae interpretatione latina, which he dedicated to his uncle in gratitude for all the benefits he had received from him. With this translation, Copernicus declared himself on the side of the humanists in the struggle over the question whether Greek literature should be revived. Copernicus' first poetic work was a Greek epigram, composed probably during a visit to Kraków, for Johannes Dantiscus' epithalamium for Barbara Zapolya's 1512 wedding to King Zygmunt I the Old. Some
time before 1514, Copernicus wrote an initial outline of his
heliocentric theory known only from later transcripts, by the title
(perhaps given to it by a copyist), Nicolai Copernici de hypothesibus motuum coelestium a se constitutis commentariolus — commonly referred to as the Commentariolus. It was a succinct theoretical description of the world's heliocentric
mechanism, without mathematical apparatus, and differed in some important details of geometric construction from De revolutionibus; but it was already based on the same assumptions regarding Earth's triple motions. The Commentariolus,
which Copernicus consciously saw as merely a first sketch for his
planned book, was not intended for printed distribution. He made only a
very few manuscript copies available to his closest acquaintances,
including, it seems, several Kraków astronomers with whom he
collaborated in 1515 – 30 in observing eclipses. Tycho Brahe would include a fragment from the Commentariolus in his own treatise, Astronomiae instauratae progymnasmata, published in Prague in 1602, based on a manuscript that he had received from the Bohemian physician and astronomer Tadeáš Hájek, a friend of Rheticus. The Commentariolus would appear complete in print for the first time only in 1878. In 1510 or 1512 Copernicus moved to Frombork, a town to the northwest at the Vistula Lagoon on the Baltic Sea coast. There, in April 1512, he participated in the election of Fabian of Lossainen as Prince - Bishop of Warmia. It was only in early June 1512 that the chapter gave Copernicus an "external curia" — a house outside the defensive walls of the cathedral mount. In 1514 he purchased the northwestern tower within the walls of the Frombork stronghold. He would maintain both these residences to the end of his life, despite the devastation of the chapter's buildings by a raid against Frombork carried out by the Teutonic Order in January 1520, during which Copernicus' astronomical instruments were probably destroyed. Copernicus conducted astronomical observations in 1513 – 16 presumably from his external curia; and in 1522 – 43, from an unidentified "small tower" (turricula), using primitive instruments modeled on ancient ones — the quadrant, triquetrum, armillary sphere. At Frombork Copernicus conducted over half of his more than 60 registered astronomical observations. Having settled permanently at Frombork, where he would reside to the end of his life, with interruptions in 1516 – 19 and 1520 – 21, Copernicus found himself at the Warmia chapter's economic and administrative center, which was also one of Warmia's two chief centers of political life. In the difficult, politically complex situation of Warmia, threatened externally by the Teutonic Order's aggressions (attacks by Teutonic bands; the Polish - Teutonic War of 1519 – 21; Albrecht's plans to annex Warmia), internally subject to strong separatist pressures (the selection of the prince - bishops of Warmia; currency reform), he, together with part of the chapter, represented a program of strict cooperation with the Polish Crown and demonstrated in all his public activities (the defense of his country against the Order's plans of conquest; proposals to unify its monetary system with the Polish Crown's; support for Poland's interests in the Warmia dominion's ecclesiastic administration) that he was consciously a citizen of the Polish - Lithuanian Republic. Soon after the death of uncle Bishop Watzenrode, he participated in the signing of the Second Treaty of Piotrków Trybunalski (7 December 1512), governing the appointment of the Bishop of Warmia, declaring, despite opposition from part of the chapter, for loyal cooperation with the Polish Crown. That same year (before 8 November 1512) Copernicus assumed responsibility, as magister pistoriae, for administering the chapter's economic enterprises (he would hold this office again in 1530), having already since 1511 fulfilled the duties of chancellor and visitor of the chapter's estates. His
administrative and economic duties did not distract Copernicus, in
1512 – 15, from intensive observational activity. The results of his
observations of Mars and Saturn in this period, and especially a series of four observations of the Sun made in 1515, led to discovery of the variability of Earth's eccentricity and of the movement of the solar apogee in
relation to the fixed stars, which in 1515 – 19 prompted his first
revisions of certain assumptions of his system. Some of the observations
that he made in this period may have had a connection with a proposed
reform of the Julian calendar made in the first half of 1513 at the request of the Bishop of Fossombrone, Paul of Middelburg. Their contacts in this matter in the period of the Fifth Lateran Council were later memorialized in a complimentary mention in Copernicus' dedicatory epistle in De revolutionibus orbium coelestium and in a treatise by Paul of Middelburg, Secundum compendium correctionis Calendarii (1516), which mentions Copernicus among the learned men who had sent the Council proposals for the calendar's emendation. During 1516 – 21, Copernicus resided at Olsztyn Castle as economic administrator of Warmia, including Olsztyn (Allenstein) and Pieniężno (Mehlsack). While there, he wrote a manuscript, Locationes mansorum desertorum (Locations of Deserted Fiefs), with a view to populating those fiefs with industrious farmers and so bolstering the economy of Warmia. When Olsztyn was besieged by the Teutonic Knights during the Polish – Teutonic War (1519 – 21), Copernicus directed the defense of Olsztyn and Warmia by Royal Polish forces. He also represented the Polish side in the ensuing peace negotiations. Copernicus worked for years with the Royal Prussian diet, and with Duke Albert of Prussia (against whom Copernicus had defended Warmia in the Polish - Teutonic War), and advised King Sigismund, on monetary reform. He participated in discussions in the East Prussian diet about coinage reform in the Prussian countries; a question that concerned the diet was who had the right to mint coin. Political developments in Prussia culminated in the 1525 establishment of the Duchy of Prussia as a Protestant state in vassalage to Poland. In 1526 Copernicus wrote a study on the value of money, Monetae cudendae ratio. In it he formulated an early iteration of the theory, now called Gresham's Law, that "bad" (debased) coinage drives "good" (un-debased) coinage out of circulation — 70 years before Thomas Gresham. He also formulated a version of quantity theory of money.
Copernicus' recommendations on monetary reform were widely read by
leaders of both Prussia and Poland in their attempts to stabilize
currency. In 1533, Johann Widmanstetter, secretary to Pope Clement VII, explained Copernicus' heliocentric system to the Pope and two cardinals. The Pope was so pleased that he gave Widmanstetter a valuable gift. In 1535 Bernard Wapowski wrote a letter to a gentleman in Vienna, urging him to publish an enclosed almanac, which he claimed had been written by Copernicus. This is the first and only mention of a Copernicus almanac in the historical records. The "almanac" was likely Copernicus' tables of planetary positions. Wapowski's letter mentions Copernicus' theory about the motions of the earth. Nothing came of Wapowski's request, because he died a couple of weeks later. Following the death of Prince - Bishop of Warmia Mauritius Ferber (1 July 1537), Copernicus participated in the election of his successor, Johannes Dantiscus (20 September 1537). Copernicus was one of four candidates for the post, written in at the initiative of Tiedemann Giese; but his candidacy was actually pro forma, since Dantiscus had earlier been named coadjutor bishop to Ferber. At first Copernicus maintained friendly relations with the new Prince - Bishop, assisting him medically in spring 1538 and accompanying him that summer on an inspection tour of Chapter holdings. But that autumn, their friendship was strained by suspicions over Copernicus' housekeeper, Anna Schilling, whom Dantiscus removed from Frombork in 1539.
In
his younger days, Copernicus the physician had treated his uncle,
brother and other chapter members. In later years he was called upon to
attend the elderly bishops who in turn occupied the see of
Warmia — Mauritius Ferber and Johannes Dantiscus — and, in 1539, his old
friend Tiedemann Giese, Bishop of Chełmno (Kulm).
In treating such important patients, he sometimes sought consultations
from other physicians, including the physician to Duke Albert and, by
letter, the Polish Royal Physician. In the spring of 1541, Duke Albert summoned Copernicus to Königsberg to attend the Duke's counselor, George von Kunheim, who had fallen seriously ill, and for whom the Prussian doctors seemed unable to do anything. Copernicus went willingly; he had met von Kunheim during negotiations over reform of the coinage. And Copernicus had come to feel that Albert himself was not such a bad person; the two had many intellectual interests in common. The Chapter readily gave Copernicus permission to go, as it wished to remain on good terms with the Duke, despite his Lutheran faith. In about a month the patient recovered, and Copernicus returned to Frombork. For a time, he continued to receive reports on von Kunheim's condition, and to send him medical advice by letter. Throughout this period of his life, Copernicus continued making astronomical observations and calculations, but only as his other responsibilities permitted and never in a professional capacity. Some of Copernicus' close friends turned Protestant, but Copernicus never showed a tendency in that direction. The first attacks on him came from Protestants. Wilhelm Gnapheus, a Dutch refugee settled in Elbląg, wrote a comedy in Latin, Morosophus (The Foolish Sage), and staged it at the Latin school that he had established there. In the play, Copernicus was caricatured as a haughty, cold, aloof man who dabbled in astrology, considered himself inspired by God, and was rumored to have written a large work that was moldering in a chest. Elsewhere Protestants were the first to react to news of Copernicus' theory. Melanchthon wrote:
Nevertheless, in 1551, eight years after Copernicus' death, astronomer Erasmus Reinhold published, under the sponsorship of Copernicus' former military adversary, the Protestant Duke Albert, the Prussian Tables,
a set of astronomical tables based on Copernicus' work. Astronomers and
astrologers quickly adopted it in place of its predecessors. Some time before 1514 Copernicus made available to friends his "Commentariolus" ("Little Commentary"), a forty page manuscript describing his ideas about the heliocentric hypothesis. It contained seven basic assumptions. Thereafter he continued gathering data for a more detailed work. About 1532 Copernicus had basically completed his work on the manuscript of De revolutionibus orbium coelestium; but despite urging by his closest friends, he resisted openly publishing his views, not wishing — as he confessed — to risk the scorn "to which he would expose himself on account of the novelty and incomprehensibility of his theses." In 1533, Johann Albrecht Widmannstetter delivered a series of lectures in Rome outlining Copernicus' theory. Pope Clement VII and several Catholic cardinals heard the lectures and were interested in the theory. On 1 November 1536, Cardinal Nikolaus von Schönberg, Archbishop of Capua, wrote to Copernicus from Rome:
By
then Copernicus' work was nearing its definitive form, and rumors about
his theory had reached educated people all over Europe. Despite urgings
from many quarters, Copernicus delayed publication of his book, perhaps
from fear of criticism — a fear delicately expressed in the subsequent dedication of his masterpiece to Pope Paul III.
Scholars disagree on whether Copernicus' concern was limited to
possible astronomical and philosophical objections, or whether he was
also concerned about religious objections. Copernicus was still working on De revolutionibus orbium coelestium (even if not certain that he wanted to publish it) when in 1539 Georg Joachim Rheticus, a Wittenberg mathematician, arrived in Frombork. Philipp Melanchthon, a close theological ally of Martin Luther, had arranged for Rheticus to visit several astronomers and study with them. Rheticus became Copernicus' pupil, staying with him for two years and writing a book, Narratio prima (First Account), outlining the essence of Copernicus' theory. In 1542 Rheticus published a treatise on trigonometry by Copernicus (later included in the second book of De revolutionibus). Under strong pressure from Rheticus, and having seen the favorable first general reception of his work, Copernicus finally agreed to give De revolutionibus to his close friend, Tiedemann Giese, bishop of Chełmno (Kulm), to be delivered to Rheticus for printing by the German printer Johannes Petreius at Nuremberg (Nürnberg), Germany. While Rheticus initially supervised the printing, he had to leave Nuremberg before it was completed, and he handed over the task of supervising the rest of the printing to a Lutheran theologian, Andreas Osiander. Osiander
added an unauthorised and unsigned preface, defending the work against
those who might be offended by the novel hypotheses. He explained that
astronomers may find different causes for observed motions, and choose
whatever is easier to grasp. As long as a hypothesis allows reliable
computation, it does not have to match what a philosopher might seek as
the truth. Copernicus died in Frauenburg (Frombork) on 24 May 1543. Legend has it that the first printed copy of De revolutionibus was placed in his hands on the very day that he died, allowing him to take farewell of his life's work. He is reputed to have awoken from a stroke induced coma, looked at his book, and then died peacefully. Copernicus was reportedly buried in Frombork Cathedral, where archaeologists for over two centuries searched in vain for his remains. Efforts to locate the remains in 1802, 1909, 1939 and 2004 had come to nought. In August 2005, however, a team led by Jerzy Gąssowski, head of an archaeology and anthropology institute in Pułtusk, after scanning beneath the cathedral floor, discovered what they believed to be Copernicus' remains. The find came after a year of searching, and the discovery was announced only after further research, on 3 November 2008. Gąssowski said he was "almost 100 percent sure it is Copernicus." Forensic expert Capt. Dariusz Zajdel of the Polish Police Central Forensic Laboratory used the skull to reconstruct a face that closely resembled the features — including a broken nose and a scar above the left eye — on a Copernicus self - portrait. The expert also determined that the skull belonged to a man who had died around age 70 — Copernicus' age at the time of his death. The grave was in poor condition, and not all the remains of the skeleton were found; missing, among other things, was the lower jaw. The DNA from the bones found in the grave matched hair samples taken from a book owned by Copernicus which was kept at the library of the University of Uppsala in Sweden. On 22 May 2010 Copernicus was given a second funeral in a Mass led by Józef Kowalczyk, the former papal nuncio to Poland and newly named Primate of Poland. Copernicus' remains were reburied in the same spot in Frombork Cathedral where part of his skull and other bones had been found. A black granite tombstone now identifies him as the founder of the heliocentric theory and also a church canon. The tombstone bears a representation of Copernicus' model of the solar system — a golden sun encircled by six of the planets. Philolaus (c. 480 – 385 BCE) described an astronomical system in which a Central Fire (different from the Sun) occupied the centre of the universe, and a counter - Earth, the Earth, Moon, the Sun itself, planets, and stars all revolved around it, in that order outward from the centre. Heraclides Ponticus (387 – 312 BCE) proposed that the Earth rotates on its axis. Aristarchus of Samos (310 BCE – c. 230 BCE) identified the "central fire" with the Sun, around which he had the Earth orbiting. Some technical details of Copernicus's system closely resembled those developed earlier by the Islamic astronomers Naṣīr al-Dīn al-Ṭūsī and Ibn al-Shāṭir, both of whom retained a geocentric model. The prevailing theory in Europe during Copernicus' lifetime was the one that Ptolemy published in his Almagest circa
150 CE; the Earth was the stationary center of the universe. Stars were
embedded in a large outer sphere which rotated rapidly, approximately
daily, while each of the planets, the Sun, and the Moon were embedded in
their own, smaller spheres. Ptolemy's system employed devices,
including epicycles, deferents and equants, to account for observations that the paths of these bodies differed from simple, circular orbits centered on the Earth. Copernicus' major theory was published in De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres), in the year of his death, 1543, though he had formulated the theory several decades earlier. Copernicus' "Commentariolus" summarized his heliocentric theory. It listed the "assumptions" upon which the theory was based as follows:
De revolutionibus itself was divided into six parts, called "books":
Georg Joachim Rheticus could have been Copernicus' successor, but did not rise to the occasion. Erasmus Reinhold could have been his successor, but died prematurely. The first of the great successors was Tycho Brahe (though he did not think the earth orbitted the sun), followed by Johannes Kepler, who had worked as Tycho's assistant in Prague. Despite the near universal acceptance today of the basic heliocentric idea (though not the epicycles or the circular orbits), Copernicus' theory was originally slow to catch on. Scholars hold that sixty years after the publication of The Revolutions there were only around 15 astronomers espousing Copernicanism in all of Europe, "Thomas Digges and Thomas Hariot in England; Giordano Bruno and Galileo Galilei in Italy; Diego de Zuniga in Spain; Simon Stevin in the Low Countries; and in Germany, the largest group – Georg Joachim Rheticus, Michael Maestlin, Christoph Rothmann (who may have later recanted), and Johannes Kepler." Additional possibilities are Englishman William Gilbert, along with Achilles Gasser, Georg Vogelin, Valentin Otto, and Tiedemann Giese. Arthur Koestler, in his popular book The Sleepwalkers, asserted that Copernicus' book had not been widely read on its first publication. This claim was trenchantly criticised by Edward Rosen, and has been decisively disproved by Owen Gingerich, who examined every surviving copy of the first two editions and found copious marginal notes by their owners throughout many of them. Gingerich published his conclusions in 2004 in The Book Nobody Read. The
intellectual climate of the time "remained dominated by Aristotelian
philosophy and the corresponding Ptolemaic astronomy. At that time there
was no reason to accept the Copernican theory, except for its
mathematical simplicity [by avoiding using the equant in determining planetary positions]." Tycho
Brahe's system ("that the earth is stationary, the sun revolves about
the earth, and the other planets revolve about the sun") also
directly competed with Copernicus'. It was only a half century later
with the work of Kepler and Galileo that any substantial evidence
defending Copernicanism appeared, starting "from the time when Galileo
formulated the principle of inertia... [which] helped to explain why
everything would not fall off the earth if it were in motion." It was not until "after Isaac Newton formulated the universal law of gravitation and the laws of mechanics [in his 1687 Principia], which unified terrestrial and celestial mechanics, was the heliocentric view generally accepted." Only mild controversy (and no fierce sermons) was the immediate result of the publication of Copernicus' book. At the Council of Trent neither Copernicus' theory nor calendar reform (which would later use tables deduced from Copernicus' calculations) were discussed. The first notable to move against Copernicanism was the Magister of the Holy Palace (i.e., the Catholic Church's chief censor), Dominican Bartolomeo Spina, who "expressed a desire to stamp out the Copernican doctrine." But with Spina's death in 1546, his cause fell to his friend, the well known theologian - astronomer, the Dominican Giovanni Maria Tolosani of the Convent of St. Mark in Florence. Tolosani had written a treatise on reforming the calendar (in which astronomy would play a large role), and had attended the Fifth Lateran Council to discuss the matter. He had obtained a copy of De Revolutionibus in 1544. His denouncement of Copernicanism appeared in an appendix to his work entitled On the Truth of Sacred Scripture. Emulating the rationalistic style of Thomas Aquinas, Tolosani sought to refute Copernicanism on philosophical arguments. While still invoking Christian Scripture and Tradition, Tolosani strove to show Copernicanism was absurd because it was unproven and unfounded on three main points. First Copernicus had assumed the motion of the Earth but offered no physical theory whereby one would deduce this motion. (No one realized that the investigation into Copernicanism would result in a rethinking of the entire field of physics.) Second Tolosani charged that Copernicus' thought processes was backwards. He held that Copernicus had come up with his idea and then sought phenomena that would support it, rather than observing phenomena and deducing from that the idea of what caused it. In this Tolosani was linking Copernicus' mathematical equations with the practices of the Pythagoreans (whom Aristotle had made arguments against, which were later picked up by Thomas Aquinas). It was argued that mathematical numbers were a mere product of the intellect without any physical reality, and as such "numbers could not provide physical causes in the investigation of nature." (This was basically a denial of the possibility of mathematical physics.) The Astronomical hypotheses such as epicycles and eccentrics were seen as mere mathematical devices to adjust calculations of where the heavenly bodies would appear, rather than an explanation of the cause of those motions. (Copernicus still relied on epicycles). This "saving the phenomena" was seen as proof that Astronomy and Math could not be taken as a serious means to determine physical causes. Lastly, according to Tolosani, Copernicus' biggest error was that he started with "inferior" fields of science to make pronouncements about "superior" fields. He used Mathematics and Astronomy to postulate about Physics and Cosmology, rather than beginning with the accepted principles of Physics and Cosmology to determine things about Astronomy and Math. In this way Copernicus seemed to be undermining the whole system of the philosophy of science at the time. Tolosani held that Copernicus had just fallen into philosophical error because he had not been versed in physics and logic - anyone without such knowledge would make a poor astronomer and be unable to distinguish truth from falsehood. Because it had not meet the criteria for scientific truth set out by Thomas Aquinas, Tolosani held that Copernicanism could only be viewed as a wild unproven theory. Tolosani recognized that the Ad Lectorem preface to Copernicus' book was not actually by him. Its thesis that astronomy as a whole would never be able to make truth claims was rejected by Tolosani, (though he still held that Copernicus' attempt to describe physical reality had been faulty), he found it ridiculous that Ad Lectorem had been included in the book (unaware that Copernicus had not authorized its inclusion). Tolosani wrote "By means of these words [of the Ad Lectorem], the foolishness of this book's author is rebuked. For by a foolish effort he [Copernicus] tried to revive the weak Pythagorean opinion [that the element of fire was at the center of the Universe], long ago deservedly destroyed, since it is expressly contrary to human reason and also opposes holy writ. From this situation, there could easily arise disagreements between Catholic expositors of holy scripture and those who might wish to adhere obstinately to this false opinion. We have written this little work for the purpose of avoiding this scandal." Tolosani declared "Nicolaus Copernicus neither read nor understood the arguments of Aristotle the philosopher and Ptolemy the astronomer." He wrote that Copernicus "is very deficient in the sciences of physics and logic. Moreover, it appears that he is unskilled with regard to [the interpretation of] holy scripture, since he contradicts several of its principles, not without danger of infidelity to himself and the readers of his book. ...his arguments have no force and can very easily be taken apart. For it is stupid to contradict an opinion accepted by everyone over a very long time for the strongest reasons, unless the impugner uses more powerful and insoluble demonstrations and completely dissolves the opposed reasons. But he does not do this in the least." He declared that he had written against Copernicus "for the purpose of preserving the truth to the common advantage of the Holy Church." Despite the efforts Tolosani put into his work it remained unpublished and it "was likely shelved in the library of the Dominican order at San Marco in Florence, awaiting its use by some new prosecutor" (it is believed that Dominican Tommaso Caccini read it before delivering a sermon against Galileo in December 1613). It has been much debated why it was not until six decades after the publication of De revolutionibus that the Catholic Church took any official action against it, even the efforts of Tolosani had gone unheeded. Proposed reasons have included the personality of Galileo Galilei and the availability of evidence such as telescope observations. How entwined the pre-Copernican theory was in theological circles can be seen in a sample of the works of John Calvin. In his Commentary on Genesis he said that "We indeed are not ignorant that the circuit of the heavens is finite, and that the earth, like a little glove, is placed in the centre." Commenting on Job 26:7 Calvin wrote "It is true that Job specifically says 'the north,' and yet he is speaking about the whole heaven. And that is because the sky turns around upon the pole that is there. For, just as in the wheels of a chariot there is an axle that runs through the middle of them, and the wheels turn around the axle by reason of the holes that are in the middle of them, even so is it in the skies. This is manifestly seen; that is to say, those who are well acquainted with the course of the firmament see that the sky so turns." Calvin's commentaries on the Psalms also show a reliance on the pre-Copernican theory; for Psalms 93:1 "The heavens revolve daily, and, immense as is their fabric and inconceivable the rapidity of their revolutions, we experience no concussion – no disturbance in the harmony of their motion. The sun, though varying its course every diurnal revolution, returns annually to the same point. The planets, in all their wanderings, maintain their respective positions. How could the earth hang suspended in the air were it not upheld by God's hand? By what means could it maintain itself unmoved, while the heavens above are in constant rapid motion, did not its Divine Maker fix and establish it." Commenting on Psalms 19:4 Calvin says "the firmament, by its own revolution draws with it all the fixed stars". There is no evidence that Calvin was aware of Copernicus, and claims that after quoting Psalm 93:1 he went on to say "Who will venture to place the authority of Copernicus above the Holy Spirit", have been discredited and shown to originate with Frederic William Farrar's Bampton Lecture in 1885. Unlike Calvin many theologians did become aware of Copernicus' theory which became increasingly controversial. The sharpest point of conflict between Copernicus' theory and the Bible concerned the story of the Battle of Gibeon in the Book of Joshua where the Hebrew forces were winning but whose opponents were likely to escape once night fell. This is averted by Joshua's prayers causing the sun and the moon to stand still. Martin Luther would question Copernicus' theory on these grounds. According to Anthony Lauterbach, while eating with Martin Luther the topic of Copernicus arouse during dinner on 4 June 1539 (as professor George Joachim Rheticus of the local University had been granted leave to visit him). Luther is said to have remarked "So it goes now. Whoever wants to be clever must agree with nothing others esteem. He must do something of his own. This is what that fellow does who wishes to turn the whole of astronomy upside down. Even in these thing that are thrown into disorder I believe the Holy Scriptures, for Joshua commanded the sun to stand still and not the earth." These remarks were made four years before the publication of On the Revolutions of the Heavenly Spheres and a year before Rheticus' Narratio Prima. In John Aurifaber's account of the conversation Luther calls Copernicus "that fool" rather than "that fellow", this version is viewed by historians as less reliably sourced. Luther's collaborator Philipp Melanchthon also took issue with Copernicanism. After receiving the first pages of Narratio Prima from Rheticus himself, Melanchthon wrote to Mithobius (physician and mathematician Burkard Mithob of Feldkirch) on October 16, 1541 condemning the theory and calling for it to be repressed by governmental force, writing "certain people believe it is a marvelous achievement to extol so crazy a thing, like that Polish astronomer who makes the earth move and the sun stand still. Really, wise governments ought to repress impudence of mind." It had appeared to Rheticus that Melanchton would understand the theory and would be open to it. This was because Melanchton had taught Ptolemaic astronomy and had even recommended his friend Rheticus to an appointment to the Deanship of the Faculty of Arts & Sciences at the University of Wittenberg after he had returned from studying with Copernicus. Rheticus' hopes were dashed when six years after the publication of De Revolutionibus Melanchthon published his Initia Doctrinae Physicae presenting three grounds to reject Copernicanism, these were "the evidence of the senses, the thousand year consensus of men of science, and the authority of the Bible". Blasting the new theory Melanchthon wrote "Out of love for novelty or in order to make a show of their cleverness, some people have argued that the earth moves. They maintain that neither the eighth sphere nor the sun moves, whereas they attribute motion to the other celestial spheres, and also place the earth among the heavenly bodies. Nor were these jokes invented recently. There is still extant Archimedes' book on The sand - reckoner; in which he reports that Aristarchus of Samos propounded the paradox that the sun stands still and the earth revolves around the sun. Even though subtle experts institute many investigations for the sake of exercising their ingenuity, nevertheless public proclamation of absurd opinions is indecent and sets a harmful example." Melanchthon went on to cite Bible passages and then declare "Encouraged by this divine evidence, let us cherish the truth and let us not permit ourselves to be alienated from it by the tricks of those who deem it an intellectual honor to introduce confusion into the arts." In the first edition ofInitia Doctrinae Physicae, Melanchthon even questioned Copernicus' character claiming his motivation was "either from love of novelty or from desire to appear clever", these more personal attacks were largely removed by the second edition in 1550. Another Protestant theologican who took issue with Copernicus was John Owen who declared that "the late hypothesis, fixing the sun as in the centre of the world' was 'built on fallible phenomena, and advanced by many arbitrary presumptions against evident testimonies of Scripture.' In Roman Catholic circles, German Jesuit Nicolaus Serarius was one of the first to write against Copernicus' theory as heretical, citing the Joshua passage, in a work published in 1609 – 1610, and again in a book in 1612. In his 12 April 1615 letter to a Catholic defender of Copernicus, Paolo Antonio Foscarini, Catholic Cardinal Robert Bellarmine condemned Copernican theory, writing "... not only the Holy Fathers, but also the modern commentaries on Genesis, the Psalms, Ecclesiastes, and Joshua, you will find all agreeing in the literal interpretation that the sun is in heaven and turns around the earth with great speed, and that the earth is very far from heaven and sits motionless at the center of the world... Nor can one answer that this is not a matter of faith, since if it is not a matter of faith 'as regards the topic,' it is a matter of faith 'as regards the speaker': and so it would be heretical to say that Abraham did not have two children and Jacob twelve, as well as to say that Christ was not born of a virgin, because both are said by the Holy Spirit through the mouth of prophets and apostles." Perhaps the strongest opponent to Copernican theory was Francesco Ingoli a Catholic priest. Ingoli wrote a January 1616 essay condemning Copernicanism as "philosophically untenable and theologically heretical." Though "it is not certain, it is probable that he was commissioned by the Inquisition to write an expert opinion on the controversy", (after the Congregation of the Index's decree against Copernicanism on 5 March 1616 Ingoli was officially appointed its consultant). Two of Ingoli's theological issues with Copernicus' theory were "common Catholic beliefs not directly traceable to Scripture: the doctrine that hell is located at the center of Earth and is most distant from heaven; and the explicit assertion that Earth is motionless in a hymn sung on Tuesdays as part of the Liturgy of the Hours of the Divine Office prayers regularly recited by priests." Ingoli also cited Genesis 1:14 where YHWH places "lights in the firmament of the heavens to divide the day from the night." Like previous commentators Ingoli pointed to the passages about the Battle of Gibeon and dismissed arguments that they should be taken metaphorically, saying "Replies which assert that Scripture speaks according to our mode of understanding are not satisfactory: both because in explaining the Sacred Writings the rule is always to preserve the literal sense, when it is possible, as it is in this case; and also because all the [Church] Fathers unanimously take this passage to mean that the sun which was truly moving stopped at Joshua's request. An interpretation which is contrary to the unanimous consent of the Fathers is condemned by the Council of Trent, Session IV, in the decree on the edition and use of the Sacred Books. Furthermore, although the Council speaks about matters of faith and morals, nevertheless it cannot be denied that the Holy Fathers would be displeased with an interpretation of Sacred Scriptures which is contrary to their common agreement." In March 1616, in connection with the Galileo affair, the Roman Catholic Church's Congregation of the Index issued a decree suspending De revolutionibus until it could be "corrected," on the grounds that the supposedly Pythagorean doctrine that the Earth moves and the Sun does not was "false and altogether opposed to Holy Scripture." The same decree also prohibited any work that defended the mobility of the Earth or the immobility of the Sun, or that attempted to reconcile these assertions with Scripture. On the orders of Pope Paul V, Cardinal Robert Bellarmine gave Galileo prior notice that the decree was about to be issued, and warned him that he could not "hold or defend" the Copernican doctrine. The corrections to De revolutionibus, which omitted or altered nine sentences, were issued four years later, in 1620. In 1633 Galileo Galilei was convicted of grave suspicion of heresy for "following the position of Copernicus, which is contrary to the true sense and authority of Holy Scripture," and was placed under house arrest for the rest of his life. The Catholic Church's 1758 Index of Prohibited Books omitted the general prohibition of works defending heliocentrism, but retained the specific prohibitions of the original uncensored versions of De revolutionibus and Galileo's Dialogue Concerning the Two Chief World Systems. Those prohibitions were finally dropped from the 1835 Index. There has been discussion of Copernicus' nationality and of whether, in fact, it is meaningful to ascribe to him a nationality in the modern sense. Historian Michael Burleigh describes the nationality debate as a "totally insignificant battle" between German and Polish scholars during the interwar period. Polish astronomer Konrad Rudnicki calls the discussion a "fierce scholarly quarrel in... times of nationalism" and describes Copernicus as an inhabitant of a German speaking territory that belonged to Poland, himself being of mixed Polish - German extraction. Rudnicki adds that Martin Luther, an opponent of Copernicus' theories, regarded him as Polish and referred to him as a "Sarmatic fool". (At the time, "Sarmatian" was a term for a nobleman of the Crown of the Kingdom of Poland.) According to Czesław Miłosz, the debate is an "absurd" projection of a modern understanding of nationality onto Renaissance people, who identified with their home territories rather than with a nation. Similarly historian Norman Davies writes that Copernicus, as was common in his era, was "largely indifferent" to nationality, being a local patriot who considered himself "Prussian". Miłosz and Davies both write that Copernicus had a German language cultural background, while his working language was Latin in accordance with the usage of the time. Additionally, according to Davies, "there is ample evidence that he knew the Polish language." Davies concludes: "Taking everything into consideration, there is good reason to regard him both as a German and as a Pole: and yet, in the sense that modern nationalists understand it, he was neither." The Stanford Encyclopedia of Philosophy describes Copernicus as a "child of a German family [who] was a subject of the Polish crown", while others note that his father was a Germanized Pole. Encyclopædia Britannica, Encyclopedia Americana, The Columbia Encyclopedia and The Oxford World Encyclopedia identify Copernicus as a "Polish astronomer". On 14 July 2009, the discoverers, from the Gesellschaft für Schwerionenforschung in Darmstadt, Germany, of chemical element 112 (temporarily named ununbium) proposed to the International Union of Pure and Applied Chemistry that its permanent name be "copernicium" (symbol Cn). "After we had named elements after our city and our state, we wanted to make a statement with a name that was known to everyone," said Hofmann. "We didn't want to select someone who was a German. We were looking world - wide." On the 537th anniversary of his birthday the official naming was released to the public.
Copernicus is honored, together with Johannes Kepler, in the liturgical calendar of the Episcopal Church (USA), with a feast day on 23 May. Galileo Galilei (15 February 1564 – 8 January 1642), was an Italian physicist, mathematician, astronomer, and philosopher who played a major role in the Scientific Revolution. His achievements include improvements to the telescope and consequent astronomical observations and support for Copernicanism. Galileo has been called the "father of modern observational astronomy", the "father of modern physics", the "father of science", and "the Father of Modern Science". His contributions to observational astronomy include the telescopic confirmation of the phases of Venus, the discovery of the four largest satellites of Jupiter (named the Galilean moons in his honor), and the observation and analysis of sunspots. Galileo also worked in applied science and technology, inventing an improved military compass and other instruments. Galileo's championing of heliocentrism was controversial within his lifetime, when most subscribed to either geocentrism or the Tychonic system. He met with opposition from astronomers, who doubted heliocentrism due to the absence of an observed stellar parallax. The matter was investigated by the Roman Inquisition in 1615, and they concluded that it could only be supported as a possibility, not as an established fact. Galileo later defended his views in Dialogue Concerning the Two Chief World Systems, which appeared to attack Pope Urban VIII and thus alienated him and the Jesuits, who had both supported Galileo up until this point. He
was tried by the Inquisition, found "vehemently suspect of heresy",
forced to recant, and spent the rest of his life under house arrest. It was while Galileo was under house arrest that he wrote one of his finest works, Two New Sciences. Here he summarized the work he had done some forty years earlier, on the two sciences now called kinematics and strength of materials. Galileo was born in Pisa (then part of the Duchy of Florence), Italy, the first of six children of Vincenzo Galilei, a famous lutenist, composer, and music theorist, and Giulia Ammannati. Gaileo became an accomplished lutist himself and would have learned early from his father a healthy skepticism for established authority, the value of well measured or quantified experimentation, an appreciation for a periodic or musical measure of time or rhythm, as well as the illuminative progeny to expect from a marriage of mathematics and experiment. Three of Galileo's five siblings survived infancy, and the youngest Michelangelo (or Michelagnolo) also became a noted lutenist and composer, although he contributed to financial burdens during Galileo's young adulthood. Michelangelo was incapable of contributing his fair share for their father's promised dowry's to their brothers - in - law, who would later attempt to seek legal remedies for payments due. Michelangelo would also occasionally have to borrow funds from Galileo for support of his musical endeavors and excursions. These financial burdens may have contributed to Galileo's early fire to develop inventions that would bring him additional income. Galileo was named after an ancestor, Galileo Bonaiuti, a physician, university teacher and politician who lived in Florence from 1370 to 1450; at that time in the late 14th century, the family's surname shifted from Bonaiuti (or Buonaiuti) to Galilei. Galileo Bonaiuti was buried in the same church, the Basilica of Santa Croce in Florence, where about 200 years later his more famous descendant Galileo Galilei was buried too. When Galileo Galilei was 8, his family moved to Florence, but he was left with Jacopo Borghini for two years. He then was educated in the Camaldolese Monastery at Vallombrosa, 35 km southeast of Florence.
Although a genuinely pious Roman Catholic, Galileo fathered three children out of wedlock with Marina Gamba.
They had two daughters, Virginia in 1600 and Livia in 1601, and one
son, Vincenzo, in 1606. Because of their illegitimate birth, their
father considered the girls unmarriageable, if not posing problems of
prohibitively expensive support or dowry's, which would have been
similar to Galileo's previous extensive financial problems with two of
his sisters. Their only worthy alternative was the religious life. Both girls were sent to the convent of San Matteo in Arcetri and remained there for the rest of their lives. Virginia took the name Maria Celeste upon entering the convent. She died on 2 April 1634, and is buried with Galileo at the Basilica of Santa Croce, Florence. Livia took the name Sister Arcangela and was ill for most of her life. Vincenzo was later legitimized as the legal heir of Galileo, and married Sestilia Bocchineri. Although he seriously considered the priesthood as a young man, at his father's urging he instead enrolled at the University of Pisa for a medical degree. In 1581, when he was studying medicine, he noticed a swinging chandelier, which air currents shifted about to swing in larger and smaller arcs. It seemed, by comparison with his heartbeat, that the chandelier took the same amount of time to swing back and forth, no matter how far it was swinging. When he returned home, he set up two pendulums of equal length and swung one with a large sweep and the other with a small sweep and found that they kept time together. It was not until Christiaan Huygens almost one hundred years later, however, that the resonant nature of a swinging pendulum was used to create an accurate timepiece. To this point, he had deliberately been kept away from mathematics (since a physician earned so much more than a mathematician) but upon accidentally attending a lecture on geometry, he talked his reluctant father into letting him study mathematics and science instead. He created a grossly inaccurate thermoscope (now commonly referred to as a Galileo thermometer) in an attempt to measure temperature and in 1586 published a small book on the design of a hydrostatic balance he had invented (which first brought him to the attention of the scholarly world).
Galileo also studied disegno, a term encompassing fine art, and in 1588 attained an instructor position in the Accademia delle Arti del Disegno in Florence, teaching perspective and chiaroscuro. Being inspired by the artistic tradition of the city and the works of the Renaissance artists, Galileo acquired an aesthetic mentality. While a young teacher at the Accademia, he began a lifelong friendship with the Florentine painter Cigoli, who included Galileo's lunar observations in one of his paintings. In
1589, he was appointed to the chair of mathematics in Pisa. In 1591 his
father died and he was entrusted with the care of his younger brother Michelagnolo. In 1592, he moved to the University of Padua, teaching geometry, mechanics, and astronomy until 1610. During this period Galileo made significant discoveries in both pure fundamental science (for example, kinematics of motion and astronomy) as well as practical applied science (for example, strength of materials and improvement of the telescope). His multiple interests included the study of astrology, which at the time was a discipline tied to the studies of mathematics and astronomy. Cardinal Bellarmine had written in 1615 that the Copernican system could not be defended without "a true physical demonstration that the sun does not circle the earth but the earth circles the sun". Galileo considered his theory of the tides to provide the required physical proof of the motion of the earth. This theory was so important to Galileo that he originally intended to entitle his Dialogue on the Two Chief World Systems the Dialogue on the Ebb and Flow of the Sea. The reference to tides was removed by order of the Inquisition. For Galileo, the tides were caused by the sloshing back and forth of water in the seas as a point on the Earth's surface speeded up and slowed down because of the Earth's rotation on its axis and revolution around the Sun. Galileo circulated his first account of the tides in 1616, addressed to Cardinal Orsini. His theory gave the first insight into the importance of the shapes of ocean basins in the size and timing of tides; he correctly accounted, for instance, for the negligible tides halfway along the Adriatic Sea compared to those at the ends. As a general account of the cause of tides, however, his theory was a failure. If
this theory were correct, there would be only one high tide per day.
Galileo and his contemporaries were aware of this inadequacy because
there are two daily high tides at Venice instead
of one, about twelve hours apart. Galileo dismissed this anomaly as the
result of several secondary causes, including the shape of the sea, its
depth, and other factors. Against the assertion that Galileo was deceptive in making these arguments, Albert Einstein expressed
the opinion that Galileo developed his "fascinating arguments" and
accepted them uncritically out of a desire for physical proof of the
motion of the Earth. Galileo dismissed as a "useless fiction" the idea, held by his contemporary Johannes Kepler, that the moon caused the tides. Galileo also refused to accept Kepler's elliptical orbits of the planets, considering the circle the "perfect" shape for planetary orbits. In 1619, Galileo became embroiled in a controversy with Father Orazio Grassi, professor of mathematics at the Jesuit Collegio Romano. It began as a dispute over the nature of comets, but by the time Galileo had published The Assayer (Il Saggiatore) in 1623, his last salvo in the dispute, it had become a much wider argument over the very nature of science itself. Because The Assayer contains such a wealth of Galileo's ideas on how science should be practised, it has been referred to as his scientific manifesto. Early in 1619, Father Grassi had anonymously published a pamphlet, An Astronomical Disputation on the Three Comets of the Year 1618, which discussed the nature of a comet that had appeared late in November of the previous year. Grassi concluded that the comet was a fiery body which had moved along a segment of a great circle at a constant distance from the earth, and since it moved in the sky more slowly than the moon, it must be farther away than the moon. Grassi's arguments and conclusions were criticized in a subsequent article, Discourse on the Comets, published under the name of one of Galileo's disciples, a Florentine lawyer named Mario Guiducci, although it had been largely written by Galileo himself. Galileo and Guiducci offered no definitive theory of their own on the nature of comets, although they did present some tentative conjectures that are now known to be mistaken. In its opening passage, Galileo and Guiducci's Discourse gratuitously insulted the Jesuit Christopher Scheiner, and various uncomplimentary remarks about the professors of the Collegio Romano were scattered throughout the work. The Jesuits were offended, and Grassi soon replied with a polemical tract of his own, The Astronomical and Philosophical Balance, under the pseudonym Lothario Sarsio Sigensano, purporting to be one of his own pupils. The Assayer was Galileo's devastating reply to the Astronomical Balance. It has been widely regarded as a masterpiece of polemical literature, in which "Sarsi's" arguments are subjected to withering scorn. It was greeted with wide acclaim, and particularly pleased the new pope, Urban VIII, to whom it had been dedicated. Galileo's dispute with Grassi permanently alienated many of the Jesuits who had previously been sympathetic to his ideas, and Galileo and his friends were convinced that these Jesuits were responsible for bringing about his later condemnation. The evidence for this is at best equivocal, however. Biblical references Psalm 93:1, 96:10, and 1 Chronicles 16:30 include text stating that "the world is firmly established, it cannot be moved." In the same manner, Psalm 104:5 says, "the Lord set the earth on its foundations; it can never be moved." Further, Ecclesiastes 1:5 states that "And the sun rises and sets and returns to its place" etc. Galileo defended heliocentrism, and claimed it was not contrary to those Scripture passages. He took Augustine's position on Scripture: not to take every passage literally, particularly when the scripture in question is a book of poetry and songs, not a book of instructions or history. He believed that the writers of the Scripture merely wrote from the perspective of the terrestrial world, from that vantage point that the sun does rise and set. Another way to put this is that the writers would have been writing from a phenomenological point of view, or style. So Galileo claimed that science did not contradict Scripture, as Scripture was discussing a different kind of "movement" of the earth, and not rotations. By 1616 the attacks on the ideas of Copernicus had reached a head, and Galileo went to Rome to try to persuade the Catholic Church authorities not to ban Copernicus' ideas. In the end, a decree of the Congregation of the Index was issued, declaring that the ideas that the Sun stood still and that the Earth moved were "false" and "altogether contrary to Holy Scripture", and suspending Copernicus's De Revolutionibus until it could be corrected. Acting on instructions from the Pope before the decree was issued, Cardinal Bellarmine informed Galileo that it was forthcoming, that the ideas it condemned could not be "defended or held", and ordered him to abandon them. Galileo promised to obey. Bellarmine's instruction did not prohibit Galileo from discussing heliocentrism as a mathematical fiction but was dangerously ambiguous as to whether he could treat it as a physical possibility. For the next several years Galileo stayed well away from the controversy. He revived his project of writing a book on the subject, encouraged by the election of Cardinal Maffeo Barberini as Pope Urban VIII in 1623. Barberini was a friend and admirer of Galileo, and had opposed the condemnation of Galileo in 1616. The book, Dialogue Concerning the Two Chief World Systems, was published in 1632, with formal authorization from the Inquisition and papal permission. Dava Sobel explains that during this time, Urban had begun to fall more and more under the influence of court intrigue and problems of state. His friendship with Galileo began to take second place to his feelings of persecution and fear for his own life. At this low point in Urban's life, the problem of Galileo was presented to the pope by court insiders and enemies of Galileo. Coming on top of the recent claim by the then Spanish cardinal that Urban was soft on defending the church, he reacted out of anger and fear. This situation did not bode well for Galileo's defense of his book. Earlier, Pope Urban VIII had personally asked Galileo to give arguments for and against heliocentrism in the book, and to be careful not to advocate heliocentrism. He made another request, that his own views on the matter be included in Galileo's book. Only the latter of those requests was fulfilled by Galileo. Whether unknowingly or deliberately, Simplicio, the defender of the Aristotelian Geocentric view in Dialogue Concerning the Two Chief World Systems, was often caught in his own errors and sometimes came across as a fool. Indeed, although Galileo states in the preface of his book that the character is named after a famous Aristotelian philosopher (Simplicius in Latin, Simplicio in Italian), the name "Simplicio" in Italian also has the connotation of "simpleton". This portrayal of Simplicio made Dialogue Concerning the Two Chief World Systems appear as an advocacy book: an attack on Aristotelian geocentrism and defence of the Copernican theory. Unfortunately for his relationship with the Pope, Galileo put the words of Urban VIII into the mouth of Simplicio. Most historians agree Galileo did not act out of malice and felt blindsided by the reaction to his book. However, the Pope did not take the suspected public ridicule lightly, nor the Copernican advocacy. Galileo had alienated one of his biggest and most powerful supporters, the Pope, and was called to Rome to defend his writings. In September 1632, Galileo was ordered to come to Rome to stand trial, where he finally arrived in February 1633. Throughout his trial Galileo steadfastly maintained that since 1616 he had faithfully kept his promise not to hold any of the condemned opinions, and initially he denied even defending them. However, he was eventually persuaded to admit that, contary to his true intention, a reader of his Dialogue could well have obtained the impression that it was intended to be a defense of Copernicanism. In view of Galileo's rather implausible denial that he had ever held Copernican ideas after 1616 or ever intended to defend them in the Dialogue, his final interrogation, in July 1633, concluded with his being threatened with torture if he did not tell the truth, but he maintained his denial despite the threat. The sentence of the Inquisition was delivered on June 22. It was in three essential parts:
According to popular legend, after recanting his theory that the Earth moved around the Sun, Galileo allegedly muttered the rebellious phrase And yet it moves, but there is no evidence that he actually said this or anything similar. The first account of the legend dates to a century after his death. After a period with the friendly Ascanio Piccolomini (the Archbishop of Siena), Galileo was allowed to return to his villa at Arcetri near Florence in 1634, where he spent the remainder of his life under house arrest. Galileo was ordered to read the seven penitential psalms once a week for the next three years. However his daughter Maria Celeste relieved him of the burden after securing ecclesiastical permission to take it upon herself. It was while Galileo was under house arrest that he dedicated his time to one of his finest works, Two New Sciences. Here he summarized work he had done some forty years earlier, on the two sciences now called kinematics and strength of materials. This book has received high praise from Albert Einstein. As a result of this work, Galileo is often called the "father of modern physics". He went completely blind in 1638 and was suffering from a painful hernia and insomnia, so he was permitted to travel to Florence for medical advice. Galileo
continued to receive visitors until 1642, when, after suffering fever
and heart palpitations, he died on 8 January 1642, aged 77. The Grand Duke of Tuscany, Ferdinando II, wished to bury him in the main body of the Basilica of Santa Croce, next to the tombs of his father and other ancestors, and to erect a marble mausoleum in his honor. These plans were scrapped, however, after Pope Urban VIII and his nephew, Cardinal Francesco Barberini, protested, because Galileo was condemned by the Catholic Church for "vehement suspicion of heresy". He
was instead buried in a small room next to the novices' chapel at the
end of a corridor from the southern transept of the basilica to the
sacristy. He was reburied in the main body of the basilica in 1737 after a monument had been erected there in his honor; during this move, three fingers and a tooth were removed from his remains. One of these fingers, the middle finger from Galileo's right hand, is currently on exhibition at the Museo Galileo in Florence, Italy. Galileo made original contributions to the science of motion through an innovative combination of experiment and mathematics. More typical of science at the time were the qualitative studies of William Gilbert, on magnetism and electricity. Galileo's father, Vincenzo Galilei, a lutenist and music theorist, had performed experiments establishing perhaps the oldest known non linear relation in physics: for a stretched string, the pitch varies as the square root of the tension. These observations lay within the framework of the Pythagorean tradition of music, well known to instrument makers, which included the fact that subdividing a string by a whole number produces a harmonious scale. Thus, a limited amount of mathematics had long related music and physical science, and young Galileo could see his own father's observations expand on that tradition. Galileo was one of the first modern thinkers to clearly state that the laws of nature are mathematical. In The Assayer he wrote "Philosophy is written in this grand book, the universe ... It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures;...." His mathematical analyses are a further development of a tradition employed by late scholastic natural philosophers, which Galileo learned when he studied philosophy. He displayed a peculiar ability to ignore established authorities, most notably Aristotelianism. In broader terms, his work marked another step towards the eventual separation of science from both philosophy and religion; a major development in human thought. He was often willing to change his views in accordance with observation. In order to perform his experiments, Galileo had to set up standards of length and time, so that measurements made on different days and in different laboratories could be compared in a reproducible fashion. This provided a reliable foundation on which to confirm mathematical laws using inductive reasoning. Galileo showed a remarkably modern appreciation for the proper relationship between mathematics, theoretical physics, and experimental physics. He understood the parabola, both in terms of conic sections and in terms of the ordinate (y) varying as the square of the abscissa (x). Galilei further asserted that the parabola was the theoretically ideal trajectory of a uniformly accelerated projectile in the absence of friction and other disturbances. He conceded that there are limits to the validity of this theory, noting on theoretical grounds that a projectile trajectory of a size comparable to that of the Earth could not possibly be a parabola, but he nevertheless maintained that for distances up to the range of the artillery of his day, the deviation of a projectile's trajectory from a parabola would only be very slight.
Based only on uncertain descriptions of the first practical telescope, invented by Hans Lippershey in
the Netherlands in 1608, Galileo, in the following year, made a
telescope with about 3x magnification. He later made improved versions
with up to about 30x magnification. With a Galilean telescope the
observer could see magnified, upright images on the earth — it was what
is commonly known as a terrestrial telescope or a spyglass. He could
also use it to observe the sky; for a time he was one of those who could
construct telescopes good enough for that purpose. On 25 August 1609,
he demonstrated one of his early telescopes, with a magnification of
about 8 or 9, to Venetian lawmakers.
His telescopes were also a profitable sideline for Galileo selling them
to merchants who found them useful both at sea and as items of trade.
He published his initial telescopic astronomical observations in March
1610 in a brief treatise entitled Sidereus Nuncius (Starry Messenger). On 7 January 1610 Galileo observed with his telescope what he described at the time as "three fixed stars, totally invisible by their smallness", all close to Jupiter, and lying on a straight line through it. Observations on subsequent nights showed that the positions of these "stars" relative to Jupiter were changing in a way that would have been inexplicable if they had really been fixed stars. On 10 January Galileo noted that one of them had disappeared, an observation which he attributed to its being hidden behind Jupiter. Within a few days he concluded that they were orbiting Jupiter: He had discovered three of Jupiter's four largest satellites (moons). He discovered the fourth on 13 January. These satellites are now called Io, Europa, Ganymede, and Callisto. Galileo named the group of four the Medicean stars, in honour of his future patron, Cosimo II de' Medici, Grand Duke of Tuscany, and Cosimo's three brothers. Later astronomers, however, renamed them Galilean satellites in honour of their discoverer. His
observations of the satellites of Jupiter created a revolution in
astronomy that reverberates to this day: a planet with smaller planets
orbiting it did not conform to the principles of Aristotelian Cosmology, which held that all heavenly bodies should circle the Earth, and many astronomers and philosophers initially refused to believe that Galileo could have discovered such a thing. His observations were confirmed by the observatory of Christopher Clavius and he received a hero's welcome when he visited Rome in 1611. Galileo
continued to observe the satellites over the next eighteen months, and
by mid 1611 he had obtained remarkably accurate estimates for their
periods — a feat which Kepler had believed impossible. From September 1610, Galileo observed that Venus exhibited a full set of phases similar to that of the Moon. The heliocentric model of the solar system developed by Nicolaus Copernicus predicted that all phases would be visible since the orbit of Venus around the Sun would cause its illuminated hemisphere to face the Earth when it was on the opposite side of the Sun and to face away from the Earth when it was on the Earth side of the Sun. On the other hand, in Ptolemy's geocentric model it was impossible for any of the planets' orbits to intersect the spherical shell carrying the Sun. Traditionally the orbit of Venus was placed entirely on the near side of the Sun, where it could exhibit only crescent and new phases. It was, however, also possible to place it entirely on the far side of the Sun, where it could exhibit only gibbous and full phases. After Galileo's telescopic observations of the crescent, gibbous and full phases of Venus, therefore, this Ptolemaic model became untenable. Thus in the early 17th century as a result of his discovery the great majority of astronomers converted to one of the various geo - heliocentric planetary models, such as the Tychonic, Capellan and Extended Capellan models, each either with or without a daily rotating Earth. These all had the virtue of explaining the phases of Venus without the vice of the 'refutation' of full heliocentrism’s prediction of stellar parallax. Galileo’s discovery of the phases of Venus was thus arguably his most empirically practically influential contribution to the two stage transition from full geocentrism to full heliocentrism via geo - heliocentrism. Galileo observed the planet Saturn, and at first mistook its rings for planets, thinking it was a three bodied system. When he observed the planet later, Saturn's rings were directly oriented at Earth, causing him to think that two of the bodies had disappeared. The rings reappeared when he observed the planet in 1616, further confusing him. Galileo also observed the planet Neptune in 1612. It appears in his notebooks as one of many unremarkable dim stars. He did not realize that it was a planet, but he did note its motion relative to the stars before losing track of it. Galileo was one of the first Europeans to observe sunspots, although Kepler had unwittingly observed one in 1607, but mistook it for a transit of Mercury. He also reinterpreted a sunspot observation from the time of Charlemagne, which formerly had been attributed (impossibly) to a transit of Mercury. The very existence of sunspots showed another difficulty with the unchanging perfection of the heavens posited by orthodox Aristotelian celestial physics, but their regular periodic transits also confirmed the dramatic novel prediction of Kepler's Aristotelian celestial dynamics in his 1609 Astronomia Nova that the sun rotates, which was the first successful novel prediction of post - spherist celestial physics. And the annual variations in sunspots' motions, discovered by Francesco Sizzi and others in 1612 – 1613, provided a powerful argument against both the Ptolemaic system and the geoheliocentric system of Tycho Brahe. A dispute over priority in the discovery of sunspots, and in their interpretation, led Galileo to a long and bitter feud with the Jesuit Christoph Scheiner; in fact, there is little doubt that both of them were beaten by David Fabricius and his son Johannes, looking for confirmation of Kepler's prediction of the sun's rotation. Scheiner quickly adopted Kepler's 1615 proposal of the modern telescope design, which gave larger magnification at the cost of inverted images; Galileo apparently never changed to Kepler's design.
Prior to Galileo's construction of his version of a telescope, Thomas Harriot,
an English mathematician and explorer, had already used what he dubbed a
"perspective tube" to observe the moon. Reporting his observations,
Harriot noted only "strange spottednesse" in the waning of the crescent,
but was ignorant to the cause. Galileo, due in part to his artistic
training and the knowledge of chiaroscuro, had
understood the patterns of light and shadow were in fact topological
markers. While not being the only one to observe the moon through a
telescope, Galileo was the first to deduce the cause of the uneven
waning as light occlusion from lunar mountains and craters.
In his study he also made topological charts, estimating the heights of
the mountains. The moon was not what was long thought to have been a
translucent and perfect sphere, as Aristotle claimed, and hardly the
first "planet", an "eternal pearl to magnificently ascend into the
heavenly empyrian", as put forth by Dante. Galileo observed the Milky Way, previously believed to be nebulous, and found it to be a multitude of stars packed so densely that they appeared to be clouds from Earth. He located many other stars too distant to be visible with the naked eye. He observed the double star Mizar in Ursa Major in 1617. In the Starry Messenger Galileo
reported that stars appeared as mere blazes of light, essentially
unaltered in appearance by the telescope, and contrasted them to
planets, which the telescope revealed to be discs. But shortly
thereafter, in his letters on sunspots, he reported that the telescope
revealed the shapes of both stars and planets to be "quite round". From
that point forward he continued to report that telescopes showed the
roundness of stars, and that stars seen through the telescope measured a
few seconds of arc in diameter. He also devised a method for measuring the apparent size of a star without a telescope. As described in his Dialogue Concerning the two Chief World Systems,
his method was to hang a thin rope in his line of sight to the star and
measure the maximum distance from which it would wholly obscure the
star. From his measurements of this distance and of the width of the
rope he could calculate the angle subtended by the star at his viewing
point. In his Dialogue he reported that he had found the apparent diameter of a star of first magnitude to be no more than 5 arcseconds, and that of one of sixth magnitude to be about 5/6 arcseconds.
Like most astronomers of his day, Galileo did not recognize that the
apparent sizes of stars that he measured were spurious, caused by
diffraction and atmospheric distortion,
and did not represent the true sizes of stars. However, Galileo's
values were much smaller than previous estimates of the apparent sizes
of the brightest stars, such as those made by Tycho Brahe
and enabled Galileo to counter anti - Copernican arguments such as those
made by Tycho that these stars would have to be absurdly large for their
annual parallaxes to be undetectable. Other astronomers such as Simon Marius, Giovanni Battista Riccioli, and Martinus Hortensius made
similar measurements of stars, and Marius and Riccioli concluded the
smaller sizes were not small enough to answer Tycho's argument. Galileo made a number of contributions to what is now known as technology, as distinct from pure physics. This is not the same distinction as made by Aristotle, who would have considered all Galileo's physics as techne or useful knowledge, as opposed to episteme, or philosophical investigation into the causes of things. Between 1595 and 1598, Galileo devised and improved a Geometric and Military Compass suitable for use by gunners and surveyors. This expanded on earlier instruments designed by Niccolò Tartaglia and Guidobaldo del Monte. For gunners, it offered, in addition to a new and safer way of elevating cannons accurately, a way of quickly computing the charge of gunpowder for cannonballs of different sizes and materials. As a geometric instrument, it enabled the construction of any regular polygon, computation of the area of any polygon or circular sector, and a variety of other calculations. Under Galileo's direction, instrument maker Marc'Antonio Mazzoleni produced more than 100 of these compasses, which Galileo sold (along with an instruction manual he wrote) for 50 lire and offered a course of instruction in the use of the compasses for 120 lire. In about 1593, Galileo constructed a thermometer, using the expansion and contraction of air in a bulb to move water in an attached tube. In 1609, Galileo was, along with Englishman Thomas Harriot and others, among the first to use a refracting telescope as an instrument to observe stars, planets or moons. The name "telescope" was coined for Galileo's instrument by a Greek mathematician, Giovanni Demisiani, at a banquet held in 1611 by Prince Federico Cesi to make Galileo a member of his Accademia dei Lincei. The name was derived from the Greek tele = 'far' and skopein = 'to look or see'. In 1610, he used a telescope at close range to magnify the parts of insects. By 1624 Galileo had perfected a compound microscope. He gave one of these instruments to Cardinal Zollern in May of that year for presentation to the Duke of Bavaria, and in September he sent another to Prince Cesi. The Linceans played a role again in naming the "microscope" a year later when fellow academy member Giovanni Faber coined the word for Galileo's invention from the Greek words μικρόν (micron) meaning "small", and σκοπεῖν (skopein) meaning "to look at". The word was meant to be analogous with "telescope". Illustrations of insects made using one of Galileo's microscopes, and published in 1625, appear to have been the first clear documentation of the use of a compound microscope. In
1612, having determined the orbital periods of Jupiter's satellites,
Galileo proposed that with sufficiently accurate knowledge of their
orbits one could use their positions as a universal clock, and this
would make possible the determination of longitude.
He worked on this problem from time to time during the remainder of his
life; but the practical problems were severe. The method was first
successfully applied by Giovanni Domenico Cassini in 1681 and was later used extensively for large land surveys; this method, for example, was used by Lewis and Clark.
For sea navigation, where delicate telescopic observations were more
difficult, the longitude problem eventually required development of a
practical portable marine chronometer, such as that of John Harrison. In his last year, when totally blind, he designed an escapement mechanism for a pendulum clock (called Galileo's escapement). The first fully operational pendulum clock was made by Christiaan Huygens in the 1650s. Galileo's theoretical and experimental work on the motions of bodies, along with the largely independent work of Kepler and René Descartes, was a precursor of the classical mechanics developed by Sir Isaac Newton. Galileo conducted several experiments with pendulums. It is popularly believed (thanks to the biography by Vincenzo Viviani) that these began by watching the swings of the bronze chandelier in the cathedral of Pisa, using his pulse as a timer. Later experiments are described in his Two New Sciences. Galileo claimed that a simple pendulum is isochronous, i.e., that its swings always take the same amount of time, independently of the amplitude. In fact, this is only approximately true, as was discovered by Christian Huygens. Galileo also found that the square of the period varies directly with the length of the pendulum. Galileo's son, Vincenzo, sketched a clock based on his father's theories in 1642. The clock was never built and, because of the large swings required by its verge escapement, would have been a poor timekeeper. Galileo
is lesser known for, yet still credited with, being one of the first to
understand sound frequency. By scraping a chisel at different speeds,
he linked the pitch of the sound produced to the spacing of the chisel's
skips, a measure of frequency. In 1638 Galileo described an
experimental method to measure the speed of light by
arranging that two observers, each having lanterns equipped with
shutters, observe each other's lanterns at some distance. The first
observer opens the shutter of his lamp, and, the second, upon seeing the
light, immediately opens the shutter of his own lantern. The time
between the first observer's opening his shutter and seeing the light
from the second observer's lamp indicates the time it takes light to
travel back and forth between the two observers. Galileo reported that
when he tried this at a distance of less than a mile, he was unable to
determine whether or not the light appeared instantaneously. Sometime between Galileo's death and 1667, the members of the Florentine Accademia del Cimento repeated the experiment over a distance of about a mile and obtained a similarly inconclusive result. Galileo put forward the basic principle of relativity,
that the laws of physics are the same in any system that is moving at a
constant speed in a straight line, regardless of its particular speed
or direction. Hence, there is no absolute motion or absolute rest. This
principle provided the basic framework for Newton's laws of motion and
is central to Einstein's special theory of relativity. A biography by Galileo's pupil Vincenzo Viviani stated that Galileo had dropped balls of the same material, but different masses, from the Leaning Tower of Pisa to demonstrate that their time of descent was independent of their mass. This was contrary to what Aristotle had taught: that heavy objects fall faster than lighter ones, in direct proportion to weight. While this story has been retold in popular accounts, there is no account by Galileo himself of such an experiment, and it is generally accepted by historians that it was at most a thought experiment which did not actually take place. An exception is Drake, who argues that the experiment did take place, more or less as Viviani described it. The experiment described was actually performed by Simon Stevin (commonly known as Stevinus), although the building used was actually the church tower in Delft in 1568. In his 1638 Discorsi Galileo's character Salviati, widely regarded as Galileo's spokesman, held that all unequal weights would fall with the same finite speed in a vacuum. But this had previously been proposed by Lucretius and Simon Stevin. Cristiano Banti's Salviati also held it could be experimentally demonstrated by the comparison of pendulum motions in air with bobs of lead and of cork which had different weight but which were otherwise similar. Galileo
proposed that a falling body would fall with a uniform acceleration, as
long as the resistance of the medium through which it was falling
remained negligible, or in the limiting case of its falling through a
vacuum. He
also derived the correct kinematical law for the distance traveled
during a uniform acceleration starting from rest — namely, that it is
proportional to the square of the elapsed time ( d ∝ t 2 ). However,
in neither case were these discoveries entirely original. The
time squared law for uniformly accelerated change was already known to Nicole Oresme in the 14th century, and Domingo de Soto, in the 16th, had suggested that bodies falling through a homogeneous medium would be uniformly accelerated. Galileo
expressed the time squared law using geometrical constructions and
mathematically precise words, adhering to the standards of the day. (It
remained for others to re-express the law in algebraic terms). He also
concluded that objects retain their velocity unless a force — often friction — acts
upon them, refuting the generally accepted Aristotelian hypothesis that
objects "naturally" slow down and stop unless a force acts upon them
(philosophical ideas relating to inertia had been proposed by John Philoponus centuries earlier, as had Jean Buridan, and according to Joseph Needham, Mo Tzu had
proposed it centuries before either of them, but this was the first
time that it had been mathematically expressed, verified experimentally,
and introduced the idea of frictional force,
the key breakthrough in validating inertia). Galileo's Principle of
Inertia stated: "A body moving on a level surface will continue in the
same direction at constant speed unless disturbed." This principle was
incorporated into Newton's laws of motion (first law). While Galileo's application of mathematics to experimental physics was innovative, his mathematical methods were the standard ones of the day. The analysis and proofs relied heavily on the Eudoxian theory of proportion, as set forth in the fifth book of Euclid's Elements. This theory had become available only a century before, thanks to accurate translations by Tartaglia and others; but by the end of Galileo's life it was being superseded by the algebraic methods of Descartes. Galileo produced one piece of original and even prophetic work in mathematics: Galileo's paradox,
which shows that there are as many perfect squares as there are whole
numbers, even though most numbers are not perfect squares. Galileo's early works describing scientific instruments include the 1586 tract entitled The Little Balance (La Billancetta) describing an accurate balance to weigh objects in air or water and the 1606 printed manual Le Operazioni del Compasso Geometrico et Militare on the operation of a geometrical and military compass. His early works in dynamics, the science of motion and mechanics were his 1590 Pisan De Motu (On Motion) and his circa 1600 Paduan Le Meccaniche (Mechanics). The former was based on Aristotelian – Archimedean fluid dynamics and held that the speed of gravitational fall in a fluid medium was proportional to the excess of a body's specific weight over that of the medium, whereby in a vacuum bodies would fall with speeds in proportion to their specific weights. It also subscribed to the Hipparchan - Philoponan impetus dynamics in which impetus is self dissipating and free fall in a vacuum would have an essential terminal speed according to specific weight after an initial period of acceleration. Galileo's 1610 The Starry Messenger (Sidereus Nuncius) was the first scientific treatise to be published based on observations made through a telescope. It reported his discoveries of:
Galileo published a description of sunspots in 1613 entitled Letters on Sunspots suggesting the Sun and heavens are corruptible. The Letters on Sunspots also reported his 1610 telescopic observations of the full set of phases of Venus, and his discovery of the puzzling "appendages" of Saturn and their even more puzzling subsequent disappearance. In 1615 Galileo prepared a manuscript known as the Letter to the Grand Duchess Christina which was not published in printed form until 1636. This letter was a revised version of the Letter to Castelli, which was denounced by the Inquisition as an incursion upon theology by advocating Copernicanism both as physically true and as consistent with Scripture. In 1616, after the order by the inquisition for Galileo not to hold or defend the Copernican position, Galileo wrote the Discourse on the tides (Discorso sul flusso e il reflusso del mare) based on the Copernican earth, in the form of a private letter to Cardinal Orsini. In 1619, Mario Guiducci, a pupil of Galileo's, published a lecture written largely by Galileo under the title Discourse on the Comets (Discorso Delle Comete), arguing against the Jesuit interpretation of comets. In 1623, Galileo published The Assayer — Il Saggiatore, which attacked theories based on Aristotle's authority and promoted experimentation and the mathematical formulation of scientific ideas. The book was highly successful and even found support among the higher echelons of the Christian church. Following the success of The Assayer, Galileo published the Dialogue Concerning the Two Chief World Systems (Dialogo sopra i due massimi sistemi del mondo) in 1632. Despite taking care to adhere to the Inquisition's 1616 instructions, the claims in the book favoring Copernican theory and a non Geocentric model of the solar system led to Galileo being tried and banned on publication. Despite the publication ban, Galileo published his Discourses and Mathematical Demonstrations Relating to Two New Sciences (Discorsi e Dimostrazioni Matematiche, intorno a due nuove scienze) in 1638 in Holland, outside the jurisdiction of the Inquisition. The Inquisition's ban on reprinting Galileo's works was lifted in 1718 when permission was granted to publish an edition of his works (excluding the condemned Dialogue) in Florence. In 1741 Pope Benedict XIV authorized the publication of an edition of Galileo's complete scientific works which included a mildly censored version of the Dialogue. In 1758 the general prohibition against works advocating heliocentrism was removed from the Index of prohibited books, although the specific ban on uncensored versions of the Dialogue and Copernicus's De Revolutionibus remained. All traces of official opposition to heliocentrism by the church disappeared in 1835 when these works were finally dropped from the Index. In 1939 Pope Pius XII, in his first speech to the Pontifical Academy of Sciences, within a few months of his election to the papacy, described Galileo as being among the "most audacious heroes of research... not afraid of the stumbling blocks and the risks on the way, nor fearful of the funereal monuments". His close advisor of 40 years, Professor Robert Leiber wrote: "Pius XII was very careful not to close any doors (to science) prematurely. He was energetic on this point and regretted that in the case of Galileo." On 15 February 1990, in a speech delivered at the Sapienza University of Rome, Cardinal Ratzinger (later to become Pope Benedict XVI) cited some current views on the Galileo affair as forming what he called "a symptomatic case that permits us to see how deep the self doubt of the modern age, of science and technology goes today". Some of the views he cited were those of the philosopher Paul Feyerabend, whom he quoted as saying "The Church at the time of Galileo kept much more closely to reason than did Galileo himself, and she took into consideration the ethical and social consequences of Galileo's teaching too. Her verdict against Galileo was rational and just and the revision of this verdict can be justified only on the grounds of what is politically opportune." The Cardinal did not clearly indicate whether he agreed or disagreed with Feyerabend's assertions. He did, however, say "It would be foolish to construct an impulsive apologetic on the basis of such views." On 31 October 1992, Pope John Paul II expressed
regret for how the Galileo affair was handled, and issued a declaration
acknowledging the errors committed by the Catholic Church tribunal that
judged the scientific positions of Galileo Galilei, as the result of a
study conducted by the Pontifical Council for Culture. In
March 2008 the head of the Pontifical Academy of Sciences, Nicola
Cabibbo, announced a plan to honor Galileo by erecting a statue of him
inside the Vatican walls. In
December of the same year, during events to mark the 400th anniversary
of Galileo's earliest telescopic observations, Pope Benedict XVI praised
his contributions to astronomy. A
month later, however, the head of the Pontifical Council for Culture,
Gianfranco Ravasi, revealed that the plan to erect a statue of Galileo
in the grounds of the Vatican had been suspended. According to Stephen Hawking, Galileo probably bears more of the responsibility for the birth of modern science than anybody else, and Albert Einstein called him the father of modern science. Galileo's
astronomical discoveries and investigations into the Copernican theory
have led to a lasting legacy which includes the categorisation of the four large moons of Jupiter discovered by Galileo (Io, Europa, Ganymede and Callisto) as the Galilean moons. Other scientific endeavors and principles are named after Galileo including the Galileo spacecraft, the first spacecraft to enter orbit around Jupiter, the proposed Galileo global satellite navigation system, the transformation between inertial systems in classical mechanics denoted Galilean transformation and the Gal (unit), sometimes known as the Galileo which is a non - SI unit of acceleration. Partly because 2009 was the fourth centenary of Galileo's first recorded astronomical observations with the telescope, the United Nations scheduled it to be the International Year of Astronomy. A global scheme was laid out by the International Astronomical Union (IAU), also endorsed by UNESCO — the UN body responsible for Educational, Scientific and Cultural matters. The International Year of Astronomy 2009 was intended to be a global celebration of astronomy and its contributions to society and culture, stimulating worldwide interest not only in astronomy but science in general, with a particular slant towards young people. Asteroid 697 Galilea is named in his honour. Galileo is mentioned several times in the "opera" section of the Queen song, "Bohemian Rhapsody". He features prominently in the song "Galileo" performed by the Indigo Girls. Twentieth century plays have been written on Galileo's life, including Life of Galileo (1943) by the German playwright Bertolt Brecht, with a film adaptation (1975) of it, and Lamp At Midnight (1947) by Barrie Stavis, as well as the 2008 play "Galileo Galilei". Kim Stanley Robinson wrote a science fiction novel entitled Galileo's Dream (2009), in which Galileo is brought into the future to help resolve a crisis of scientific philosophy; the story moves back and forth between Galileo's own time and a hypothetical distant future. Galileo Galilei was recently selected as a main motif for a high value collectors' coin: the €25 International Year of Astronomy commemorative coin, minted in 2009. This coin also commemorates the 400th anniversary of the invention of Galileo's telescope.
The obverse shows a portion of his portrait and his telescope. The
background shows one of his first drawings of the surface of the moon.
In the silver ring other telescopes are depicted: the Isaac Newton Telescope, the observatory in Kremsmünster Abbey, a modern telescope, a radio telescope and a space telescope. In 2009, the Galileoscope was also released. This is a mass produced, low cost educational 2-inch (51 mm) telescope with relatively high quality. |